

Computer Engineering and Applications Vol. 4, No. 1, February 2015

ISSN: 2252-4274 (Print) 19

ISSN: 2252-5459 (Online)

An Imperialist Competitive Algorithm for The Winner

Determination Problem in Combinatorial Auction

Reza Mostafavi, Seyed Naser Razavi, Mohammad Ali Balafar

Faculty of Electronic and Computer Engineering, University of Tabriz, Tabriz, Iran

rezaa.mostafavi@gmail.com, razavi@iust.ac.ir, balafarila@tabrizu.ac.ir

ABSTRACT

Winner Determination problem (WDP) in combinatorial auction is an NP-complete

problem. The NP-complete problems are often solved by using heuristic methods

and approximation algorithms. This paper presents an imperialist competitive

algorithm (ICA) for solving winner determination problem. Combinatorial auction

(CA) is an auction that auctioneer considers many goods for sale and the bidder bids

on the bundle of items. In this type of auction, the goal is finding winning bids that

maximize the auctioneer’s income under the constraint that each item can be

allocated to at most one bidder. To demonstrate, the postulated algorithm is applied

over various benchmark problems. The ICA offers competitive results and finds

good-quality solution in compare to genetic algorithm (GA), Memetic algorithm

(MA), Nash equilibrium search approach (NESA) and Tabu search.

Keywords: Winner determination problem, Combinatorial auction, Imperialist

competitive algorithm

1. INTRODUCTION

The combinatorial auction is a type of auction that bidders can bid on

combinations of items. Auction’s winners are given all items that bid. No item is

given to those who don’t win. Combinatorial auction allows bidders to bid for a

bundle of goods (services and resources) and the valuation of the bundles depends

on synergies between the individual goods, resources or services [1]. The

combinatorial auction is expressed as follows: a set of m indivisible items that are

simultaneously auctioned among n bidders [2]. In combinatorial auction, the goal is

finding winning bids that maximize the auctioneer’s income under the constraint

that each item can be allocated to at most one bidder. Determining winner in CA is a

complex problem and can be formulated as an optimization problem which is NP-

complete [3, 4]. The combinatorial auctions are used in transportation, resource and

task allocation in multi agent systems, cloud computing and communication network

[2, 5-7].

Winner determination problem in CA is expressed as follows: the WDP consists

of a set of m goods G={g1,g2,…,gm} and a set of n bids B={B1,B2,…,Bn}. Each bid

Bj includes a tuple <Mj,Pj> where Mj is a set of items (Mj ⊆ G) and Pj is the price of

Mj (Pj≥0 , Pjϵ Ʀ). Also consists a matrix Am×n where Aij=1 if the good gi is offered in

Mj by bid Bj and Aij=0 if good Gi is not offered in Mj by bid Bj. The auctioneer’s

objective is to calculate an assignment X={x1,x2,…,xn}, ∀xj ϵ {0,1} to determine

winner. When xj=1 bid Bj is accepted (a winning bid) else (xj=0) this is a losing bid.

The WDP can be formulated as an integer linear program:

Reza Mostafavi, Seyed Naser Razavi, Mohammad Ali Balafar

An Imperialist Competitive Algorithm for The Winner Determination Problem in Combinatorial Auction

20 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

Maximize ∑

 (1)

Subject to: ∑ ∀ { } { }

 (2)

Function (1) maximizes the auctioneer’s income which calculated as the sum of

prices of the winning bids. Function (2) is the constraints that mean the item can be

allocated to at most one bidder.

2. RELATED WORK

All works done for this problem is classified into three classes [2]:

a) Approximation: the algorithms that find an approximately optimal allocation.

The algorithms find winners quickly, but these algorithms don’t guarantee

optimum solution for all problems. In paper [7], authors present a general

technique based on maximal in range mechanisms that converts any α-

approximation non-truthful algorithm (α<1) for this problem into Ω(

) and

Ω(α)-approximate truthful mechanisms. When agents have a general multi-

parameter function, social welfare in the oracle model is Ω(
√

) [8]. In [9] is

given Ω(

√
) -Approximate truthful mechanism for sub-additive valuation

function.

b) Special cases: focus on special cases that can be solved efficiently. In first

case, bidder request a bundle of two items. The second case is the linear order

case. In this case items are ordered in a linear order and each proper bundle is for

an uninterrupted segment of items. Paper [10] reviews greedy mechanisms for

truthful combinatorial auction in special cases which agents are interested in sets

of size at most s. Also in the paper [11], the authors present a more sophisticated

search algorithm in special case.

c) Heuristics: A NP-completes are problems that we cannot write algorithms for

them to run in polynomial time and obtain optimal outputs on all input instances.

In this category, algorithms try to find optimal (or near optimal) answers in a

reasonable time. Casanova [12] is a stochastic local search method proposed in

paper [12]. In this paper Casanova is compared with the combinatorial auction

structural search (CASS) [3] that is a branch-and-bound algorithm. The results

show that Casanova is faster than CASS and also always find a better answer. In

paper [13] is proposed a method based on hybrid simulated annealing (SAGII).

SAGII includes an embedded branch-and-bound move. The SAGII is compared

with the Casanova method and results show SAGII is better than Casanova. Paper

[14] proposes four meta-heuristic (stochastic local search, Tabu search, genetic

algorithm and memetic algorithm) for solving the winner determination problem.

The results in this paper show that memetic algorithm provides competitive result

and find a good-quality solution in comparison to other algorithms. But the

runtime memetic algorithm is not better than other algorithms. Also, paper [15]

proposes a different evolution algorithm and competitive with genetic algorithm

and memetic algorithm. On paper [16] is proposed Nash equilibrium search

approach (NESA) that is compared with genetic algorithm and results show that

NESA is better. Also, the results show that the solution quality is near optimal.

The well-known complete algorithms for the WDP are based on the branch-and-

Computer Engineering and Applications Vol. 4, No. 1, February 2015

ISSN: 2252-4274 (Print) 21

ISSN: 2252-5459 (Online)

bound method. Paper [17] proposes the iterative deepening A*, the Branch-on-

items (BoI), the Branch on Bids (BoB) and the combinatorial auction BoB

(CABoB) [17].

3. AN IMPERIALIST COMPETITIVE ALGORITHM FOR THE WDP

The imperialist competitive (IC) is a computational algorithm that is utilized to

solve optimization problem of different types [18]. The main basis of this algorithm

is assimilation, imperialistic competition and revolution.

 The ICA algorithm starts by generating a set of candidate random solutions in

the search space of the optimization problem. The generated random points are

called the initial Countries. Countries in this algorithm are the counterpart

of chromosomes in GA and particles in Particle Swarm Optimization (PSO) and it is

an array of values of a candidate solution of optimization problems. The cost

function of the optimization problem determines the power of each country. Based

on their power, some of the best initial countries (the countries with the least cost

function value) become Imperialists and start taking control of other countries

(called colonies) and form the initial Empires [18].

In this section, an imperialist competitive algorithm is proposed to solve the

winner determination problem. The main background of proposed algorithm is

presented in the following subsections:

3.1 COUNTRY REPRESENTATION

For simulation of a country, a binary vector (A) having n genome is utilized

where n is equal to the number of bids. The value of each component is 0 or 1. Here

1 present accepted of bid and 0 present rejection of bid.

3.2 THE INITIALIZATION OF THE COUNTRY

We use the random key encoding (Rk) [19] for creating a new country. The

random key operates as follows: we create n real number between 0 and 1 where n is

the number of bids. Then, we select the bid having the maximum order value and

add it in the current allocation. Then, we select the bid having the second-highest

order value if it does not conflict with bids that are in the allocation. This process

repeats until checking all of the bids.

3.3 THE INITIALIZATION OF THE EMPIRES

First, Ncountry initial countries are generated. Then, Nimp emperor is selected from

the best countries. The other Ncol countries are assigned to the most similar emperor.

3.4 REVOLUTION: SUDDEN CHANGE IN THE POSITION OF A

COUNTRY

In this section, a new empire is made and a colony randomly is selected. Then a

genome is chosen and its value is inverted. (i.e. if the genome bit is 1, it is changed

to 0). After that, the selected colony is added to the new empire. This is repeated for

Reza Mostafavi, Seyed Naser Razavi, Mohammad Ali Balafar

An Imperialist Competitive Algorithm for The Winner Determination Problem in Combinatorial Auction

22 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

a specific number of times. Also, the best country is selected for emperor of this

empire.

3.5 ASSIMILATION: COLONIES MOVE TOWARDS IMPERIALIST

A new assimilation policy is proposed in the postulated policy. The number of

emperor bits replaced with the colony bids and the conflict bids are removed (Figure

1).

This moves colony towards the emperor. Also, a stochastic local search algorithm

(Algorithm 1) is used to improve the quality of emperors.

FIGURE 1. Assimilation operation

3.6 THE STOCHASTIC LOCAL SEARCH METHOD

Algorithm 2. The SLS method

Require: a WDP formula, an allocation A, maxiter, wp

Ensure: an improved allocation A

1. For I=1 to maxiter do

2. R=random number between 0 and 1

3. If R<wp the

4. Bid=pick a random bid (*step 1)

5. Else

6. Bid=pick a best bid (*step 2)

7. End if

8. A=A with picked bid included into it

9. Remove from A any conflicting bid

10. End for

 Return the best allocation found

Algorithm 1. The assimilation method

Require: an allocation empires

1. for i=1 to the size of empires do

2. For each colony A in emperor(i)

3. Move colony A toward emperor(i)

4. End for

5. Apply SLS on emperor(i)

6. End for

 Return the best allocation found

Computer Engineering and Applications Vol. 4, No. 1, February 2015

ISSN: 2252-4274 (Print) 23

ISSN: 2252-5459 (Online)

Algorithm 3. The imperialist competitive algorithm

Require: a WDP formula, maxiter

Ensure: an allocation of bids that maximize the auctioneer’s revenue

1. Create the conflict graph

2. Create an initial empires ica according to RK encoding

3. While number of imperialist equal to 1

4. Revolution phase

5. Assimilation phase (algorithm 2)

6. Exchange phase

7. Eliminate phase

8. End for

Return the best country solution found

To improve the quality of answers in the empire, we use a stochastic local search

method [20]. The SLS method starts with a generated country A, then, it performs a

certain number of local steps that consists of selecting a bid to be added in country A

and removing all conflicting bids that can be occurred in the current allocation. The

added bid is selected according to one of the two following ways:

a) The first way (step1 of Algorithm1) is choosing the bid in a random way with a

fixed probability wp>0.

b) The second way (step2) is choosing the best bid.

The process that mentioned above is repeated. The maxiter is defined as a

variable that represents the number of iterations and it is fixed empirically.

The SLS algorithm is sketched in Algorithm 2 [20].

3.7 POSITION EXCHANGE BETWEEN A COLONY AND EMPEROR

A colony with a better position than the emperor has the chance to take the

control of empire by replacing the existing imperialist.

3.8 ELIIMINATE THE POWERLESS EMPIRES

Gradually, the weak empires lose their power and they will finally be eliminated.

3.9 THE ICA ALGORITHM FOR WDP

The proposed ICA algorithm for the WDP is a simple imperialist competitive

algorithm. Countries generated randomly according to the random key encoding.

ICA starts with an initial empires (IE) which is randomly selected from countries.

Then, it applies the revolution operation to construct a new empire. Also, it applies

an assimilation operation to move colonies toward empires. Then it performs

exchange operation to exchange position between a colony and an emperor. Finally,

it applies elimination operation to eliminate the weak empires. The ICA process is

repeated a finite number. This number is obtained by an empirical study. The overall

ICA algorithm for the WDP is sketched in Algorithm 3.

4. COMPUTATIONAL RESULTS

Reza Mostafavi, Seyed Naser Razavi, Mohammad Ali Balafar

An Imperialist Competitive Algorithm for The Winner Determination Problem in Combinatorial Auction

24 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

This section gives some experiment results. The source code is written in Octave

on a computer with core2 Duo 2.5 GHz and 3 Gb of RAM.

We performed several experiments to evaluate the performance of the postulated

algorithm on the WDP. The algorithm is compared with some other methods,

including Tabu search [14], genetic algorithm (GA) [14], memetic algorithm [21]

and equilibrium-based approach [16].

4.1 BENCHMARKS

To measure the performance of algorithms on the WDP problem we use the

combinatorial auction test suite (CATS) [22] to generate benchmarks. We generate

50 instances for test. The instances can be divided into 5 different groups where each

group contains 10 instances. If m is the number of goods and n is the number of

bids, then the details of each group are given as follows:

a) REL-1000-500: 10 instances from 101 to 110: m=500, n=1000.

b) REL-1000-1000: 10 instances from 201 to 210: m=1000, n=1000.

c) REL-500-1000: 10 instances from 301 to 310: m=500, n=1000.

d) REL-1500-1000: 10 instances from 401 to 410: m=1000, n=1500.

e) REL-1500-1500: 10 instances from 501 to 510: m=1500, n=1500.

4.2 PARAMETERS TUNING

We used an experimental study to determine the parameters of the ICA algorithm.

The ICA parameters are the country size (Ncountry) and the size of the initial emperor

(Nimp). The SLS search in the improvement phase of ICA, performs a number of

iterations at each call to achieve the best result, equal to maxiter. The parameter wp

is fixed empirically to 0.2

FIGURE 2. The impact of the country and initial emperor parameters on the solution quality of

method ICA

Computer Engineering and Applications Vol. 4, No. 1, February 2015

ISSN: 2252-4274 (Print) 25

ISSN: 2252-5459 (Online)

FIGURE 3. The impact of the country and initial emperor parameters on the CPU time of the ICA

4.2.1 THE IMPACT OF THE SIZE OF THE COUNTRY AND INITIAL

EMPEROR ON THE ICA PERFORMANCE

We performed several experiments on the instances of the five different

groups to show the impact of the size of the country and initial emperor.

Figure 2 shows the impact of the country and initial emperor parameters on the

solution quality of ICA. For each group of problems, the quality of the solution is

improved when the country and initial emperor parameters increase. Figure 3 shows

that the CPU time of ICA becomes larger when the parameters increase.

4.2.2 THE IMPACT OF THE PARAMETERS ON ICA

Table 1 shows the results found for ICA by applying five groups of instances.

column sol presents average revenue and column time shows average CPU time of

the algorithm in second. This table shows an overview of results with different value

of parameters. We can see that by increasing the value of the parameters the solution

quality is improved, but the CPU time for the ICA process is increasing.

TABLE 1.

The results of ICA on instances for different parameters.

Reza Mostafavi, Seyed Naser Razavi, Mohammad Ali Balafar

An Imperialist Competitive Algorithm for The Winner Determination Problem in Combinatorial Auction

26 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

4.3 EXPERIMENTAL RESULTS

We perform several experiments to evaluate the performance of ICA on the WDP

by comparing over utilized state-of-arts methods. The parameters for other methods

are:

a) The Tabu search parameters: the maximum number of iterations (maxiter) is

5000, the λ is equal to 40 and the parameter d is set to 10.

b) The genetic algorithm parameters: max generation is set to 150, popsize is

equal to 30, crossover rate is set to 0.8 and the mutation rate is set to 0.1.

c) The memetic parameters: the size of collection C is fixed to (8,8), the size of

generation is 100, maxiter is equal to 300 and wp is set to 0.3.

4.3.1 A COMPARISON BETWEEN TABU, MEMETIC, GA, NESA AND

ICA

We can see that the results of Tabu, memetic, GA, NESA and ICA in tables 2 to

6. In the tables, sol is the solution found by the algorithm and time is CPU time of

the algorithm in second.

TABLE 2.

GA, Memetic, Tabu, NESA and ICA on some REL 500-1000 instances

Instances GA

time sol

Memetic

time sol

Tabu

 time sol

NESA

time sol

ICA

time sol

In301 2.57 5916.18 86.69 6712.09 6.28 6712.09 16.79 5848.77 19.53 6712.09
In302 9.73 930710 78.60 930710 6.08 930710 76.31 178001.17 20.85 930710

In303 66.16 300240.4 107.54 358439.59 7.10 354902.92 498.82 307034.60 25.35 358425.87

In304 29.54 2515.14 92.77 2707.68 7.22 2640.94 264.82 2624.21 24.76 2691.26
In305 34.86 272490.67 92.04 348221.49 7.52 343619.91 245.98 264832.96 20.98 345893.69

Test set ins Ncountry Nimp Maxiter Time sol

REL 500-1000 10 10 5 300 4.1598 172003.10

REL 1000-500 10 10 5 300 8.1593 121198.8

REL 1000-1000 10 10 5 300 9.1342 208077.67

REL 1500-1000 10 10 5 300 14.3393 211518.24

REL 1500-1500 10 10 5 300 14.6269 287171.30

REL 500-1000 10 20 8 60 6.7751 172908.38

REL 1000-500 10 20 8 60 15.1648 122269.12

REL 1000-1000 10 20 8 60 16.5704 208950.86

REL 1500-1000 10 20 8 60 27.2228 213469.48

REL1500-1500 10 20 8 60 27.7536 289634.85

REL 500-1000 10 40 10 300 21.1246 173592.14

REL 1000-500 10 40 10 300 39.1037 123129.76

REL 1000-1000 10 40 10 300 45.7174 210858.21

REL 1500-1000 10 40 10 300 67.9613 215717.91

REL 1500-1000 10 40 10 300 64.7756 291600.82

REL 500-1000 10 30 12 500 32.6712 173465.33

REL 1000-500 10 30 12 500 58.9308 134734.65

REL 1000-1000 10 30 12 500 58.4658 211262.15

REL 1500-1000 10 30 12 500 91.5021 233062.31

REL 1500-1000 10 30 12 500 88.5099 317529.71

Computer Engineering and Applications Vol. 4, No. 1, February 2015

ISSN: 2252-4274 (Print) 27

ISSN: 2252-5459 (Online)

In306 13.64 26576.04 83.67 30334.23 8.10 28606.19 109.52 25748.60 19.28 29096.06

In307 12.93 25277.95 83.08 28204.62 8.24 26691.17 110.97 25314.95 17.08 28046.87

In308 26.79 321.15 75.82 321.15 7.08 321.15 34.97 321.15 22.97 321.15
In309 13.51 54.33 83.23 59.06 7.22 56.82 126.37 54.22 25.13 58.29

In310 11.67 29661.06 80.53 35470 7.52 34744.81 133.36 29827.25 15.27 34966.13

TABLE 3.

GA, Memetic, Tabu, NESA and ICA on some REL 1000-500 instances
Instances GA

time sol

Memetic

time sol

Tabu

 time sol

NESA

time sol

ICA

time sol

In101 6.67 16892.71 155.96 18908.04 17.27 18908.04 30.03 18314.08 27.43 18832.1

In102 12.68 472331.66 133.97 488882 14.01 488882 24.15 75155.59 39.06 488882

In103 88.65 287894.74 178 359269.84 19.51 337548.52 593.64 288393.03 51.04 352396.75
In104 26.82 2124.49 148.95 2469.83 16.81 2312.3 224.74 2302.20 41.06 2361.53

In105 44.28 224920.30 153.99 302346.96 18.55 290608.52 274.21 228814.53 34.01 298918.2
In106 13.54 18398.49 144.8 22731.15 17.9 20464.63 95.09 18247.12 41.43 21765.04

In107 13.99 18780.93 147.27 22189.85 18.16 20953.8 106.79 18978.79 36.2 22066.02

In108 36.24 451.24 139.17 477.81 17.15 460.57 127.73 451.5 43.69 475.9
In109 19.01 67.50 141.93 72.19 16.02 69.46 134.44 67.31 31.53 71.01

In110 14.26 20007.2 136.07 25865.21 16.83 25183.61 122.86 21583.96 45.54 25530.04

TABLE 4.

GA, Memetic, Tabu, NESA and ICA on some REL 1000-1000 instances
Instances GA

time sol

Memetic

time sol

Tabu

 time sol

NESA

time sol

ICA

time sol

In201 6.41 19100.48 154.75 20277.56 17 20277.56 36.8 19120.6 33.44 20277.56

In202 33.37 952030 128.34 965723 12.58 965723 1831 726301.78 39.44 965723
In203 135.6 421996.06 206.47 532577.38 20.36 504628.94 1702 433633.84 63.81 524950

In204 44.8 3225.34 165.09 3753.44 17.66 3694.23 545.04 3593.35 58.1 3747.01

In205 64.35 340127.66 167.54 483069.57 19.33 449419 639.28 358558.65 41.57 475163.04
In206 19.78 33854.09 145.92 38184.07 18.03 37184.47 227.88 36872.99 44.12 38359.94

In207 20.47 28648.47 146.31 34141.25 18.67 31766.1 218.57 29810.36 35.09 33789.44

In208 53.32 586.66 135.22 598.92 18.41 590.84 135.38 586.32 48.16 597.80

In209 23.09 74.41 144.73 85.43 16.27 80.51 248.91 78.44 45.91 83.61

In210 18.73 36044.24 139.52 46944.75 16.83 46309.86 243.07 38142.29 47.49 45990.67

TABLE 5.

GA, Memetic, Tabu, NESA and ICA on some REL 1500-1000 instances
Instances GA

time sol

Memetic

time sol

Tabu

 time sol

NESA

time sol

ICA

time sol

in401 6.88 10999.09 222.2 12563.62 23.7 12563.62 36.39 10416.42 48.5 12240.55

in402 18.88 920281.3 190.8 972951 23.4 972951 137.4 177141.8 56.5 972951

in403 208 508356.4 316.3 660188.7 37.8 636119.5 2992 518298.4 101.1 653802.17
in404 56.8 3603.04 245.42 4214.07 29.95 4051.75 884.48 3977.15 74.86 4076.68

in405 102.92 398347.46 258.25 567193.03 34.57 556290.67 1407 418859.6 60.25 559704.69

in406 28.54 37828.12 222.2 44107.94 30.57 41192.46 352.51 37340.61 67.92 43418.38
in407 29.16 31431.18 222.71 37429.59 31.56 35782.32 549.83 31996.92 71.5 36726.97

in408 76.49 1401.04 214.23 1438.39 31.43 1420.09 530.56 1401.1 81.72 1432.32

in409 30.01 100.01 215.95 109.23 27.5 105.55 581.96 104.88 69.22 106.91
in410 30.05 37131.41 210.39 48617.41 28.65 46358.71 826.61 40966.71 68.34 47446.71

TABLE 6.

GA, Memetic, Tabu, NESA and ICA on some REL 1500-1500 instances
Instances GA

time sol

Memetic

time sol

Tabu

 time sol

NESA

time sol

ICA

time sol

in501 5.45 6427.45 215.6 8159.5 21.6 8159.5 38.67 6529.83 28.1 8159.5

in502 25.99 1453583 188 1486440 23.3 1486440 784.8 534453.2 53.1 1486440
in503 259.6 607988.2 344.6 798177.1 38.3 788158.3 5538 630143.9 97.8 793414.8

in504 80.1 4793.66 266.1 5529.08 32.2 5422.7 2345 5407.38 80.9 5349.34

in505 117.7 495142.04 274.25 714650.73 35.54 673762.95 2581 526419.81 63.1 685191.77

Reza Mostafavi, Seyed Naser Razavi, Mohammad Ali Balafar

An Imperialist Competitive Algorithm for The Winner Determination Problem in Combinatorial Auction

28 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

in506 38.89 51965.42 224.56 60820.64 30.41 9960.65 768.1 51925.16 60.92 60777.02
in507 33.27 43262.29 222.54 50679.66 31.34 49970.8 721.46 44062.03 42.37 50138.41

in508 94.19 1187.32 212.37 1212.3 33 1201.14 468.12 1187.15 80.47 1206.93

in509 31.68 100.4 112.42 216.59 27.56 111.28 698.39 104.29 64.83 109.14
in510 35.31 56161.08 213.94 72484.29 28.58 69315.57 978.41 62072.23 72.37 70375.38

The result of tables 2 to 6 shows that memetic algorithm, Tabu and ICA methods

find a good-quality answer for all instances while, the GA and NESA usually fail to

find a good-quality answer for all instances. We can see that the Tabu is the fast

algorithm. Also, the memetic algorithm usually finds best answer, but the CPU time

is high. The ICA algorithm usually finds a best second answer, but the CPU time is

better than memetic algorithm. The ICA algorithm has a worse-quality response

0.83% than the memetic algorithm. But the ICA algorithm 71.2% are faster than

algorithm algorithm. Also, The ICA algorithm has a better-quality response 1.17 %

than tabu algorithm.

5. CONCLUSION

We proposed an imperialist competitive algorithm (ICA) for the winner

determination problem in combinatorial auction. We evaluated this method on the

different instances of problems, is compared to genetic algorithm (GA), memetic

algorithm (MA), Tabu search and Nash equilibrium search (NESA). The results

show that the ICA algorithm is competitive algorithm. Though cannot find best

answer, but find a good-quality answer in modest time.

ACKNOWLEDGEMENTS

This paper would not have been possible without the support of many people.

The author wishes to express her gratitude to her incentives, Leila Habibpour who

was abundantly helpful and offered invaluable as sistance, support and guidance.

The author would also like to convey thanks to the Ministry and Faculty for

providing the financial means and laboratory facilities. The author wishes to express

her love and gratitude to her beloved families; for their understanding endless love,

through the duration of her studies.

Computer Engineering and Applications Vol. 4, No. 1, February 2015

ISSN: 2252-4274 (Print) 29

ISSN: 2252-5459 (Online)

REFERENCES

[1] L. M. Ausubel, P. Cramton, and P. Milgrom, "The clock-proxy auction: A

practical combinatorial auction design," 2006.

[2] L. Blumrosen and N. Nisan, "Combinatorial auctions," Algorithmic Game

Theory, vol. 267, p. 300, 2007.

[3] Y. Fujishima, K. Leyton-Brown, and Y. Shoham, "Taming the computational

complexity of combinatorial auctions: Optimal and approximate

approaches," in IJCAI, 1999, pp. 548-553.

[4] D. Krych, "Calculation and Analysis of Nash Equilibria Af Vickery-based

Payment Rules for Combinatorial Exchanges," Harvard University, 2003.

[5] J. Collins, R. Sundareswara, M. Gini, and B. Mobasher, "Bid selection

strategies for multi-agent contracting in the presence of scheduling

constraints," in Agent Mediated Electronic Commerce II, ed: Springer, 2000,

pp. 113-130.

[6] N. Nisan, "Bidding and allocation in combinatorial auctions," in Proceedings

of the 2nd ACM conference on Electronic commerce, 2000, pp. 1-12.

[7] X. Wang, J. Sun, H. Li, C. Wu, and M. Huang, "A reverse auction based

allocation mechanism in the cloud computing environment," Appl. Math, vol.

7, pp. 75-84, 2013.

[8] R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz, "Bundling

equilibrium in combinatorial auctions," Games and Economic Behavior, vol.

47, pp. 104-123, 2004.

[9] S. Dobzinski, N. Nisan, and M. Schapira, "Approximation algorithms for

combinatorial auctions with complement-free bidders," in Proceedings of the

thirty-seventh annual ACM symposium on Theory of computing, 2005, pp.

610-618.

[10] A. Borodin and B. Lucier, "On the limitations of greedy mechanism design

for truthful combinatorial auctions," in Automata, Languages and

Programming, ed: Springer, 2010, pp. 90-101.

[11] T. Sandholm and S. Suri, "BOB: Improved winner determination in

combinatorial auctions and generalizations," Artificial Intelligence, vol. 145,

pp. 33-58, 2003.

[12] H. H. Hoos and C. Boutilier, "Solving combinatorial auctions using

stochastic local search," in AAAI/IAAI, 2000, pp. 22-29.

[13] Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu, "Heuristics for a bidding

problem," Computers & operations research, vol. 33, pp. 2179-2188, 2006.

[14] D. Boughaci, "Metaheuristic approaches for the winner determination

problem in combinatorial auction," in Artificial Intelligence, Evolutionary

Computing and Metaheuristics, ed: Springer, 2013, pp. 775-791.

[15] D. Boughaci, "A Differential Evolution Algorithm for the Winner

Determination Problem in Combinatorial Auctions," Electronic Notes in

Discrete Mathematics, vol. 36, pp. 535-542, 2010.

[16] C. Tsung, H. Ho, and S. L. Lee, "An Equilibrium-Based Approach for

Determining Winners in Combinatorial Auctions," in Parallel and

Distributed Processing with Applications (ISPA), 2011 IEEE 9th

International Symposium on, 2011, pp. 47-51.

Reza Mostafavi, Seyed Naser Razavi, Mohammad Ali Balafar

An Imperialist Competitive Algorithm for The Winner Determination Problem in Combinatorial Auction

30 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

[17] T. Sandholm, "Optimal winner determination algorithms," Combinatorial

auctions, pp. 337-368, 2006.

[18] E. Atashpaz-Gargari and C. Lucas, "Imperialist competitive algorithm: an

algorithm for optimization inspired by imperialistic competition," in

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, 2007, pp.

4661-4667.

[19] J. C. Bean, "Genetic algorithms and random keys for sequencing and

optimization," ORSA journal on computing, vol. 6, pp. 154-160, 1994.

[20] D. Boughaci, B. Benhamou, and H. Drias, "Stochastic local search for the

optimal winner determination problem in combinatorial auctions," in

Principles and Practice of Constraint Programming, 2008, pp. 593-597.

[21] D. Boughaci, B. Benhamou, and H. Drias, "A memetic algorithm for the

optimal winner determination problem," Soft Computing, vol. 13, pp. 905-

917, 2009.

[22] K. Leyton-Brown, M. Pearson, and Y. Shoham, "Towards a universal test

suite for combinatorial auction algorithms," in Proceedings of the 2nd ACM

conference on Electronic commerce, 2000, pp. 66-76.

