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ABSTRAKSI 
 

Komputer pemrograman untuk bermain permainan papan melawan pemain manusia 
telah lama digunakan sebagai ukuran untuk pengembangan kecerdasan buatan. 
Pendekatan standar untuk bermain game komputer adalah untuk mencari langkah 
terbaik dari bagian permainan yang diberikan dengan menggunakan pencarian 
minimax dengan fungsi evaluasi statis. Fungsi evaluasi statis penting untuk kinerja 
memainkan game namun desain sering mengandalkan pemain ahli manusia. Makalah 
ini membahas bagaimana perbedaan sementara (TD) belajar dapat digunakan untuk 
membangun sebuah fungsi evaluasi statis melalui bermain sendiri dan mengevaluasi 
dampak untuk berbagai pengaturan parameter . Permainan Kalah , permainan non - 
kesempatan kompleksitas moderat, terpilih sebagai tempat pengujian . Hasil empiris 
menunjukkan bahwa TD belajar sangat menjanjikan untuk membangun fungsi 
evaluasi yang baik untuk permainan akhir dan secara substansial dapat meningkatkan 
kinerja secara keseluruhan bermain game dalam mempelajari seluruh permainan . 
 
Kata kunci: temporal perbedaan pembelajaran, pembelajaran penguatan , bermain 
game komputer , fungsi evaluasi statis , kecerdasan buatan . 

 
ABSTRACT 

 
Programming computers to play board games against human players has long been 
used as a measure for the development of artificial intelligence. The standard 
approach for computer game playing is to search for the best move from a given 
game state by using minimax search with static evaluation function. The static 
evaluation function is critical to the game playing performance but its design often 
relies on human expert players. This paper discusses how temporal differences (TD) 
learning can be used to construct a static evaluation function through self-playing 
and evaluates the effects for various parameter settings. The game of Kalah, a non-
chance game of moderate complexity, is chosen as a testbed. The empirical result 
shows that TD learning is particularly promising for constructing a good evaluation 
function for the end games and can substantially improve the overall game playing 
performance in learning the entire game. 
  
Keywords: Temporal Difference learning, reinforcement learning, computer game 
playing, static evaluation function, artificial intelligence.   
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1.  INTRODUCTION 
 

Programming computers to play games has a history as long as computers. It is 
not only fun in nature but also a challenge to develop a machine that has the ability 
to match or even surpass the intelligence of human in planning and reasoning. 
Computer game playing against human players has also been used as a measure for 
the development of artificial intelligence. It is a good testbed for machine learning as 
its performance measures are clear and well-defined. In the past, complex board 
games such as checkers, chess, Othello, backgammon and Go have been widely 
studied as a testing ground for various machine learning procedures [1-4]. 

  
The standard approach for computer game playing is to search for the best move 

from a given game state by using minimax search with static evaluation function. 
The idea is to consider all legal moves as a game proceeds and maximize one’s 
winning chance by assuming the opponent always pick the move worst to the player. 
However, the search space in most games is of considerable size. It is impractical, if 
not impossible, to make a move based on the exhaustive search. Heuristic evaluation 
functions, which estimate one’s possibility of winning for a given game 
configuration, are thus often used for the tip nodes of the partially generated game 
tree. In order for the program to have a strong level of play, it is important to have a 
good control strategy on both searching technique and static evaluation function.  

 
Good evaluation functions are difficult to design, and they are often manually 

sketched by human experts. Expert players need to extract features which may 
contribute to the winning of the game, such as piece advantage, relative mobility, 
and center control. It is, however, even more difficult to combine these features 
together to yield a good approximation of a game state. Linear combination of 
weights and features is often used but it suffers from three problems. First, as most 
of the hand craft features are correlated, it is questionable that a good estimation can 
be obtained by a simple linear combination. Second, the linear combination has very 
limited computational power on solving real world problems. Third, it is difficult to 
determine the exact weights of the features even for human experts. 

 
This paper focuses on the construction of good evaluation functions by using TD 

learning with self-playing. 
 

2.  LITERATURE REVIEW 
 

Samuel Arthur was the first one who proposed a learning algorithm to adjust the 
weights of features for his checker program [1]. Through self-play, the algorithm 
learned the best weights which minimized the error of the linear combination of 
features. A few years later, he improved his algorithm by employing signature table, 
which adds non-linearity to the feature combination [2]. Though his checker 
program is one of the pioneers in machine learning as well as the state-of-art at that 
time, his algorithm is highly domain-dependent and thus difficult to reuse in other 
game playing program. 

 
As oppose to the linear combination of features, Lee and Mahajan proposed a 

Bayesian learning method to optimize the process [3]. It belongs to the pattern 
matching approach which assumed multivariate normal distribution of data and the 
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known priori probability of each class. Lee and Mahajan also empirically showed 
that the gain of this function was about equivalent to two extra plies of search. While 
this approach sounds appealing, it requires considerable amount of training data 
labeled by human experts, and is in fact a variation of supervised learning. 

 
In the past two decades, more and more people investigated learning methods on 

constructing evaluator based on supervised learning method, such as neurogammon 
[4]. It was designed to examine whether back-propagation might be useful in higher-
level tasks which are currently tackled by expert systems and knowledge 
engineering approaches. Despite the success of these programs, supervised learning 
approach faces one serious problem – it requires massive labelled training data. 
Sometimes training data can be obtained from recorded games played by experts – 
not only it is tedious, but also suffers the problem of human error on imprecise score 
assignment for a given game configuration. 

 
Tesauro applied TD method for the game of backgammon and obtained 

surprisingly good result [5]. With zero knowledge built in at the start of learning, i.e. 
given only a raw description of the board state, the network learned to play at a 
strong intermediate level through self-play. The program selected a move by 
generating all legal moves in a given position and picking the one with the highest 
value (it is equivalent to one-ply searching). With hand craft features added on, it is 
able to surpass neurogammon [4]. With 2-ply searching and 1,500,000 games being 
trained, it becomes competitive to the best human player in the world [4]. More 
recent advances in backgammon can be found in []. 

 
Nicol Schraudolph et. al. [7] also tried to apply TD method to a more complex 

game - 9x9 Go. Their approach is to base the training on network architectures that 
reflect the spatial organization of both input and reinforcement signals on the Go 
board, and training protocols that provide exposure to competent play. They found 
these yield far better performance than undifferentiated networks trained by self-
play alone. With domain-specific constraint like reflection, color reversal properties 
of the game, feature extractions are trained instead of extracted by human experts. 
By one-ply search, their program is able to defeat a commercial Go program at low-
playing level. More recent advances in Go can be found in [8-9]. 

 
 

3. TEMPORAL DIFFERENCE LEARNING 
 
Training game playing program is difficult and belongs to the class of delayed 

reinforcement learning paradigm, in which reward or penalty is delayed until the end 
of the game. As such, it is difficult to know which move in a sequence of moves 
makes a mistake and thus the temporal credit assignment problem must be solved so 
as to train the network properly. These methods are studied systematically by Sutton 
[10] and named Temporal Difference (TD) method. TD training method is a class of 
reinforcement learning algorithm which uses past experience with an incompletely 
known system to predict its future and is well suit for the game playing problems.  
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Specifically, a network is set up to observe a sequence of board position, x1, x2, 
…, xt, resulting in a final reward signal z. In the simplest case the reward signal is 
z=1 if network wins and z=0 if the opponent wins. In this case the network’s output 
Pt is an estimate of its probability of winning from board position xt. The move 
selected at each time step is the moves that maximize Pt when the network to play. 

 
TD training is based on the prediction difference between two temporally 

successive predictions and solves the credit assignment problem by using the 
following equation: 

Δ𝑤𝑡 = 𝛼(𝑃𝑡+1 − 𝑃𝑡)�𝜆𝑡−𝑘∇𝑤𝑃𝑘

𝑡

𝑘=1

 

 
where Pt is the network’s output upon observation of input pattern xt at time t, w is 
the vector of weights that parameterizes the network, and ∇𝑤𝑃𝑘 is the gradient of 
network output with respect to weights. This equation allows the weights to be 
updated incrementally. When 𝜆 = 1, TD learning is equivalent to supervised learning 
by the pairing of each input with the final reward. For the case of 𝜆 = 0, Sutton 
proved that TD always converges to the optimal predictions for a linear network and 
a linearly independent set of input patterns.  
 

TD method overcomes the temporal credit assignment problem and makes the 
reinforcement training feasible. One potential advantage of TD method over 
supervised learning is that training data set is not fixed, and thus might be able to 
avoid the problem of overtraining and over fitting. In other words, the performance 
always improves with increasing training time, provided that the neural network can 
learn to represent the changes as instructed by TD learning. Though lack of 
theoretical support of convergence for non-linear network, Tesauro shows 
empirically the convergence of TD method in his backgammon program. It is 
interesting to see if the same result holds for other non-chance board games with 
similar complexity level. 

 
4. GAME OF KALAH 
 

The game of Kalah is a game with great ancient. Variously known as Mancala, 
Wari, or Awari, Kalah is a board game originally played in Africa, with stones 
placed in small pits dug in the ground. Though little written analysis exists, Kalah 
has been played at the drop of a stone by people of many cultures for centuries. 
Kalah’s simple equipment and rules make it a natural for computer play. Details of 
the game rules are described in http://en.wikipedia.org/wiki/Kalah. The game of 
Kalah is chosen because of its simplicity of rules and the moderate complex level of 
search space (about 1012), which is similar to the game of backgammon. Starting 
from 1989, Kalah competition is included in the International Computer Olympiad 
and the winner of the year is MACRO, which was built into substantial strategical 
knowledge with shallow searches. However, in the next year, it was being defeated 
by Lithidion, a program implemented with standard game playing techniques (α-β 
search) and omniscient endgame database, in the score of 5-0 [11]. It is believed that 
omniscient endgame database is the key for winning the game. It is interesting to see 
if TD learning can train a good evaluation function comparable to these programs. 
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5. IMPLEMENTATION 
 
The complete implementation of the TD network program comprises about 1500 

lines of C code, and is designed to be a tool to study TD learning in practice. 
Besides the network training capability, it also contains several functions which 
allow users to set different parameters and train the network. The basic functions 
includes loading a game board configuration, setting up parameters for both training 
and testing, conducting head-to-head competition against human or computer, 
plotting the testing result, etc. The program also saves the training network weight 
automatically for every 1000 epochs. The entire program can be divided roughly 
into two models: minimax model and Multi-Layer Perceptron (MLP) model, where 
they were developed and tested separately before they are combined together. 

 
The minimax search model is used as a baseline in the experiment. Since Kalah is 

a game with small number of fan-outs, this sort of game playing problems is usually 
tackled by the traditional game tree searching approach with fairly good result. 
Using the minimax model, the performance of the TD network can be evaluated 
more objectively and accurately. In this paper, the model is built using standard 
minimax search with piece-advantage as the evaluator. Even with such a simple set 
up, this program can defeat an intermediate level human player with 7-ply look 
ahead search. 

 
The MLP model is first built instead of TD model because it can be changed to 

TD model later with some modifications. This model is implemented with the 
momentum term and increasing the learning rate. The TD network being built has a 
feed-forward network structure with full connectivity from one layer to the next. 
Both single layer with no hidden units and multi-layer with a single hidden layer of 
varying number of units are also examined.  

 
The representation of input and output data in multi-layer networks is a crucial 

factor in the success of both supervised learning and TD learning procedures. The 
network trained in this project contains 14 units to encode the game board 
configuration: 12 units to encode the number of stones contained in each pit on both 
side, 2 units to encode the number of stones captured in both Kalah. Before the data 
are fed into the network, the signal will be first normalized by dividing the number 
by total number of stones in the game. This representation ensures that the input 
range is between 0 and 1, which is more suitable for the network learning. However, 
since the number of stones in a pit is usually small, the input is often biased towards 
0. One remedy is to multiply this value by 2, and leave the possibility of having an 
input value greater than 1. 

 
It is also known that features relevant to good play always gives significantly 

better performance in training compared to raw board description, therefore hand 
craft features are also added to the network as input for the purpose of comparison. 
Five selected hand craft features are Kalah difference (Analog -1 to 1, 1 unit), 
vulnerable pits (Binary 0/1, 6 units on each side), attackable pits (Binary 0/1, 6 units 
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on each side), total stone difference (Analog -1 to 1, 1 units) and total number of 
stones left on both side (Analog 0 to 1, 1 unit). 
 

Sigmoid functions are used for both hidden and output units in order to add in the 
non-linearity computation to the network. As with back-propagation, a certain 
amount of parameter tuning was required in order to obtain good results with the TD 
algorithm. For example, initial weights of the network should be small, parameters 
like λ and learning rate α should be adjusted heuristically for a given network and 
task. It is known that low learning rate improves the learning result, whereas high 
learning rate degrades performance. In this paper, α varies from 0.05 to 0.2, λ from 0 
to 1, and initial weights from -0.333 to 0.333 are examined in order to select the best 
combination for the learning. 

 
Unlike backgammon, Kalah is a non-chance game in which deterministic 

computer programs always give the same response for a given game board 
configuration. That is, the same set sequence of moves will be used if the network is 
trained by self-play. This will certainly cause the overfitting problem in the network. 
In order to make the training possible, controlled randomness are needed in the 
training so that the repetition of same sequence of moves is avoided. In short, the 
network is trained by random self-play. 

 
For the performance measure, models are compared according to the result of 

head-to-head competitions. With the same problem facing in the training, it is 
necessary to have some methods to ensure different games are played in the head-to-
head competitions. One possible solution is to have the games starting with various 
preset openings, each of which is of equal strength to both sides. In this case, there 
should be at least a few hundreds of these opening games in order to conduct a fair 
performance measure. It is, however, difficult to obtain so many opening games. 
Another alternative is to add randomness to the minimax model. In particular, if the 
minimax program obtains more than 1 best move with equal score, it will randomly 
pick one among them. This helps the program to have different games played and 
we can compare two programs’ strength based on head-to-head competitions. 

 
6. EMPIRICAL RESULTS 

 
First, how the parameter setting affects learning is examined. In particular, the 

learning rate α, the value of λ, and the number of hidden units are studied. Then the 
best combination of these parameters is chosen for the next experiment. 

 
6.1 THE EFFECT ON THE PARAMETERS 
 

It is well known that the learning rate α has a great impact on the learning. A low 
learning rate will slow the learning process whereas a high learning rate might cause 
oscillation in performance, and thus the choice of α must be very careful. A rule of 
thumb to select the learning rate is to set α inversely proportional to the number of 
input units, and it is about 0.07 in our case. In the experiment, the network 
performance is examined for various choices of α after 10,000 epochs. It is found 
that the learning speed increases as α gets larger and larger, but the network 
performance begins to oscillate when the learning rate is larger 0.1. This result 
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matches roughly with the rule of thumb and so 0.1 is selected as a good learning rate 
to this particular problem. 

 
The value of λ controls the learning behavior of TD algorithm. When λ = 0, it is 

equivalent to Q-learning [11] while when λ = 1, it is same as the supervised-
learning. Sutton [10] stated that smaller λ values can learn much faster than 
supervised-learning methods because “they make more efficient use of their 
experience, converge more rapidly and make more accurate predictions along the 
way.” However, the result we obtained is rather contradicted, where it seems that 
higher λ value tends to learn faster. This situation happens because TD assumes the 
prediction of the successor is more accurate than that of the predecessors, but it is 
generally not true in the early stage of learning. Tesauro suggested λ be varied as a 
function of learning time, initially be set to a large value then decrease gradually as 
the predictions become more accurate. [4] 

 
The last parameter to explore is the effect on the number of hidden units in 

learning. Tesauro [4] stated that due to the randomness of the training data, 
overfitting and overtraining will not occurred in TD learning, and hence adding 
more hidden units and longer training time to the network will always improve its 
performance. This statement is being confirmed in our experiment. 

 
Based on the results of these experiments, the best combination of the parameters 

seems to be λ = 0.8, α = 0.1 and the number of hidden units = 30. Therefore this 
parameter setting is used in the following experiments. 
 

6.2 LEARNING THE ENDGAME AND ENTIRE GAME 
 
The next TD experiment is to learn the endgame positions, in which a game is to 

be finished within 10 moves in optimal play of both players. This is an exceedingly 
simple situation to consider but useful to verify the correctness of program as well as 
the capability of the TD learning. Another advantage of having this endgame 
learning is that the network output can be compared directly with the actual 
minimax score because the exhaustive search in the endgame becomes possible.  

 
In this set up, south (ANN) should be able to win the game in 3 moves no matter 

whose turn it is. In traditional minimax search it requires 6-ply or above in order to 
make the correct sequence of moves. It is found that in TD learning, the network is 
capable to learn the correct moves in 7000 epoch training by self-play and the 
performance remains stable on further training. It is worth noting that even the 
network can play the game perfectly after the training, the value returned from the 
network is still far from being accurate as shown in the following Figure. 
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This is because a heuristic evaluation function need not exactly represent the true 

values of states for correct move selection. Instead, it only needs to have the correct 
sign for the slope between pairs of points in order to make correct state preference. 

 
The next logical step is to train the network playing the entire game. As one 

might expect, training for the entire game is far more difficult than for the endgame, 
since both the number of possible game states and the move sequence to learn are 
greatly increased. It is expected the number of epochs required will be in the order 
of hundred thousands. In fact, in the game of backgammon, which has approximate 
the same complexity as the game of Kalah, requires more than 200,000 games of 
training in order to reach an intermediate strong level of play. 

 

 

The figure above shows the performance of the network as the learning proceeds. 
Despite the fluctuation in performance, it can be seen that the learning is actually 
taken place. The performance of the network after 120,000 epochs of training is 
about equivalent to two extra ply level of search. The reason of the slow learning 
might be due to rather different strategies needed in different stages of game. For 
example, in the early engaged, it is important to build up strong pits to capture 
opponent’s stones whereas near the endgame, it becomes more crucial to maximize 
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the number of stones and moves of oneself. It is questionable whether a monolithic 
network is capable to learn an adaptable strategy for different stages of game. 
 

6.3 TRAIN WITH THE HAND CRAFT FEATURES 
 
Network with hand craft features is also examined. It is found that the hand craft 

features gives better performance than the raw board data, although the learning 
becomes much slower due to the increase of the input and hidden units. 

 

 
 
When playing against with the trained ANN network, one notices that the 

network has developed its own strategy of play. The network tends to pick the move 
on the pits nearest to its Kalah and capture opponent’s stones whenever possible. 
This strategy keeps his moves as many as possible while minimize the opponent’s, 
and keeps as many as stones on its side so that those stones goes into its Kalah when 
his opponent has no move left. 

 
This is very similar to the strategy employed by human players in the endgame. 

This result is also consistent with the style of TD learning in which TD network 
predicts better near the end than the beginning. It also demonstrates the need of 
several neural networks to evaluate games at different stages. 
 

7.  CONCLUSION 
 

This paper demonstrates how temporal differences (TD) learning can be 
employed to construct a static evaluation function through self-playing in a non-
chance game. The game of Kalah, a non-chance game of moderate complexity, is 
chosen as a testbed. The empirical result shows that TD learning is particularly 
promising for constructing a good evaluation function for the end games and can 
substantially improve the overall game playing performance in learning the entire 
game. Although the network performance is yet to reach an advanced level of 
playing skill, significant learning has been shown and better result is expected to see 
for longer training period. The effects for various parameter settings are also 
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evaluated and it is found that a suitable parameters setting will be λ = 0.8, α = 0.1 
with the number of hidden units = 30. 
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