

Computer Engineering and Applications Vol. 6, No. 3, 2017

ISSN: 2252-4274 (Print) 87

ISSN: 2252-5459 (Online)

Python Source Code Plagiarism Attacks in Object-Oriented

Environment
Oscar Karnalim, Aldi Aldiansyah

Maranatha Christian University

oscar.karnalim@it.maranatha.edu, lietafei93@gmail.com

ABSTRACT

Since source code plagiarism is an emerging issue on Computer Science major and
Python is a new popular programming language, this paper aims to empirically

enlist plagiarism attacks that might be occurred on Python source code. As our case
study, our work will be focused on source code plagiarism in object-oriented
environment. The result of this work is expected to become either an evaluation

baseline or a prior knowledge for developing Python-targeted plagiarism detection
system. Based on 280 plagiarism-suspected pairs that were extracted from four

Basic Data Structure classes, four findings can be deducted. First, there are 20
distinct Python plagiarism attacks that might be occurred in object-oriented
environment. Second, plagiarism attack trend on both object-oriented and procedural

environment are considerably similar to each other. Third, there is no need to handle
plagiarism attacks in both object-oriented and procedural environment separately.

Last, plagiarism attacks in object-oriented environment is more monotonous than
such attacks in procedural environment.

Keywords: Source Code Plagiarism, Plagiarism Attack, Python, Object-Oriented

Environment, Undergraduate CS Education.

1. INTRODUCTION

Source code plagiarism refers to an act of reusing other people’s code without

acknowledging the original author beforehand [1]. It is a big concern on

undergraduate Computer Science major since, on such major, most assignments are
submitted electronically and such electronic representation can be easily replicated

in a no time [2]. To handle such issue, several automatic plagiarism detection
systems have been developed. These systems are expected to extenuate the burden
of detecting such illegal behavior.

As our long-term goal, we plan to propose a Python-targeted source code
plagiarism detection system for programming assignments in our university.

However, since developing a solution without knowing the problem well might
cause an incompatible solution, this paper will act as a prior work to map the
problem (i.e. possible attacks that might be occurred on programming courses)

comprehensively. It will be conducted based on 280 plagiarism-suspected pairs
collected from four undergraduate classes of Basic Data Structure course. We are

aware that Karnalim has done similar work on Introductory Programming course
[3]. Hence, we complement his work by focusing on two new contributions. First,
we will enlist plagiarism attacks in object-oriented environment. Second, we will

check whether the trend of plagiarism attacks in object-oriented environment is
similar to such trend in procedural environment.

Oscar Karnalim, Aldi Aldiansyah

Python Source Code Plagiarism Attacks in Object-Oriented Environment

88 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

2. RELATED WORK

According to Al-Khanjari et al [4], by excluding hybrid approach, source code
plagiarism detection system can be classified into two categories, namely attribute-

based and structure-based approach. On the one hand, attribute-based approach
refers to an approach which relies on key properties to determine similarity. The key
properties are extracted from both compared-to-be source codes and then compared

using a particular similarity algorithm. To enhance the accuracy, some of them use
approximate-matching algorithm that has been well-used on Information Retrieval

domain [5], [6] or Machine Learning domain [7]. In such manner, detected cases are
not only limited to verbatim copy but also partially-similar copy. On the other hand,
structure-based approach refers to an approach which relies on source code structure

to determine similarity. Source codes are converted to internal representation, such
as source code token [8], [9] or low-level token [2], [10] and then compared to each

other using a string similarity algorithm. According to several works [11], [12], this
kind of approach outperforms attribute-based approach in terms of effectiveness
toward most plagiarism cases.

When observed further toward these plagiarism detection systems, most of them
were developed by viewing source code plagiarism from black-box perspective.

They did not consider the detail of plagiarism characteristics before developing the
system. Hence, we would argue that some of them might not be applicable on real
environment. This paper aims to fill such gap by providing plagiarism

characteristics. Such characteristics will be generated by enlisting possible
plagiarism attacks that might be occurred on programming courses. For our case

study, we will focus on Python plagiarism attacks in object-oriented environment. It
is important to note that this work complements Karnalim’s work [3] by focusing on
two new contributions. First, our work will be focused on object-oriented

environment, an environment that has not been discussed by Karnalim’s work.
Second, our work will check whether the trend of plagiarism attacks in object-

oriented environment is similar to such trend in procedural environment.
Besides providing a prior knowledge for developing a Python-targeted source

code plagiarism detection system, there are two other benefits that can be extracted

from this work. First, listed Python plagiarism attacks can be used as evaluation
metrics for evaluating already-developed plagiarism detection system. Second,

plagiarism attack trend can be used as a part of prior consideration before
developing a Python-targeted source code plagiarism detection system. If the trend
of plagiarism attacks in object-oriented environment is similar to such trend in

procedural environment, then it is unnecessary to handle plagiarism attacks in both
environments separately. Otherwise, plagiarism attacks should be handled separately

based on their environment.

3. RESULTS AND DISCUSSION

In general, there are two research questions proposed in this work. First, what

kinds of plagiarism attacks are occurred on object-oriented environment? Second, is
plagiarism attack trend in object-oriented environment similar to such trend in
procedural environment? Both questions will be answered by conducting our four-

fold proposed methodology. The first research question will be answered on the
third phase while the second one will be answered on the fourth phase.

Computer Engineering and Applications Vol. 6, No. 3, 2017

ISSN: 2252-4274 (Print) 89

ISSN: 2252-5459 (Online)

Our proposed methodology consists of four phases that should be executed in

sequential manner. These phases are raw data collection, plagiarism-suspected pair
filtering, manual classification of plagiarism attacks, and trend analysis.

First, raw data collection is responsible to collect student source codes for our

dataset. This phase is implemented by collecting all submitted source code projects
from four undergraduate classes of Basic Data Structure (BDS) course. Such course

was held in the even semester of 2016/2017 academic year where each student is
required to submit 14 source code projects for the whole semester. In terms of
involved built-in functions and syntaxes, this course extends function and syntax set

from Introductory Programming course [3] by incorporating standard object-
oriented concept namely class, constructor, method, and attribute. It is important to

note that BDS course is selected as our case study instead of Object-Oriented
Programming (OOP) course since we want to check plagiarism attack trend on a
course that utilize object-oriented environment as its supplementary topic, not the

main one. That is why we use the term Object-Oriented Environment instead of
Object-Oriented Programming as our terminology.

Second, plagiarism-suspected pair filtering is responsible to select the most
representative plagiarism-suspected pairs. This phase is implemented by generating
plagiarism-suspected pairs in pairwise manner for each assignment per class. To

ensure that such pairs are plagiarism-suspected pairs, we will only take pairs that
satisfy two rules. First, both projects should be graded with a score higher or equal

to 80 of 100. Such rule is applied to ensure that both projects share the same goal
(i.e. solving the problem correctly), as it is known that two source codes with
different goals cannot be considered as a plagiarism pair. Second, similarity degree

between both projects should be more or equal to average similarity threshold on
such assignment. Such rule is applied to ensure that both projects share a

considerably high similarity, as it is known that high similarity is one of the key
factors to determine plagiarism. Similarity measurement is implemented as in
Karnalim’s work [3]. Both projects will be converted to token sequences and

compared to each other using Rabin-Karp Greedy String Tiling algorithm. The only
difference between his work and ours is that, in our work, since a project may

contain more than one source code file, token sequence for each project will be
formed as the concatenation of token sequences resulted from source code files on
that project.

Since the authors of this work are required to classify automatically-listed
plagiarism attacks manually at the third phase, not all pairs are fed to the third phase.

Instead, for each assignment, we will take 5 random pairs per class. We prefer to
select such pairs randomly rather than only taking pairs with the highest similarity
degree since some plagiarism attacks might not be found on top pairs due to their

significant modification. As a result, there are 280 plagiarism-suspected pairs. These
pairs are generated by taking 5 random pairs per class per assignment where there

are 4 classes and 14 assignments.
Third, manual classification of plagiarism attacks is responsible to empirically

enlist plagiarism attacks found on filtered pairs. It is the only phase that will be

conducted manually by the authors. In terms of responsibility, the second author is
responsible to enlist initial attack list while the first author is responsible to evaluate

such list and perform some corrections if necessary.

Oscar Karnalim, Aldi Aldiansyah

Python Source Code Plagiarism Attacks in Object-Oriented Environment

90 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

Last, trend analysis is responsible to check whether the trend of resulted
plagiarism attack list is similar to the trend of plagiarism attack list in procedural
environment. This phase will be conducted by comparing the frequency distribution

of Karnalim’s and our plagiarism attack list using Pearson correlation [13].

4. RESULT AND DISCUSSION

4.1 What kinds of plagiarism attacks are occurred on object-oriented

environment?

According to our proposed methodology, 20 distinctive plagiarism attacks are
extracted from 280 plagiarism-suspected pairs. The detail and occurrence frequency
of these attacks can be seen on Table 1, sorted in descending order of occurrence

frequency. Similar with attacks listed on Karnalim’s work [3], each attack works in
reversible fashion. For instance, if an attack is focused on incorporating a dummy

method, then removing dummy method is also considered as that attack.

TABLE 1.

Plagiarism Attack List

Attack Type
Occurrence

Frequency (Pairs)

Modify comment 237

Modify local variable name 220

Modify whitespace 91

Incorporate dummy instructions without changing the decision logic 45

Modify method name 37

Incorporate logical expression that can be replaced with boolean constant 35

Rearrange method declaration 30

Rearrange loosely-coupled instructions on similar scope 29

Break down API-based instruction to several more-specific API-based

instructions
24

Modify class name 23

Rearrange branching statements based on its condition validation sequence 15

Reuse declared variables for other processes 14

Exchange API-based instruction with other API-based instruction that yield

similar functionality for particular circumstance
11

Encapsulate a particular task as a void method with the use of global variables 7

Encapsulate a particular task as a void method without the use of global

variables
4

Incorporate dummy methods 4

Change loop type 2

Change loop boundary 2

Change incorporated algorithm with another algorithm which shares similar

goal
2

Assign different default value to a variable 1

Computer Engineering and Applications Vol. 6, No. 3, 2017

ISSN: 2252-4274 (Print) 91

ISSN: 2252-5459 (Online)

4.2 Is plagiarism attack trend in object-oriented environment similar with such

trend in procedural environment?

The occurrence frequency distribution of listed plagiarism attacks from

Karnalim’s work [3] and ours can be seen on Figure 1. Vertical axis represents
normalized occurrence frequency degree in percentage. It is calculated by dividing

the frequency with the total number of involved pairs for each dataset. On the
contrary, horizontal axis represents merged plagiarism attack set from Karnalim’s
and our work. Since the number of distinct plagiarism attacks found in our work is

lower than Karnalim’s work, we map our attacks to his list and only leave the attack
as it is if it is not listed on Karnalim’s work. For convenience, on Figure 1, each

Karnalim’s listed attack will be prefixed with KP and followed by its unique ID
where the detail for such ID can be seen on his work [3]. It is important to note that,
since our attack list put more details on comment, whitespace, and identifier name

modification, some attacks are merged to fit Karnalim’s attack scope. Such merging
mechanism is conducted by recounting such frequency toward our dataset based on

Karnalim’s attack scope.

FIGURE 1. The Normalized Occurrence Frequency Distribution of Listed

Plagiarism Attacks

When correlation between both trends is measured using Pearson correlation, it is

clear that both trends share high similarity. It generates 0.961 while the maximum

similarity score for such correlation is 1. Hence, it can be stated that plagiarism
attack trend in object-oriented environment is similar with such trend in procedural

environment. Such finding is also strengthened by the fact that both trends are
visually similar to each other on Figure 1.

Oscar Karnalim, Aldi Aldiansyah

Python Source Code Plagiarism Attacks in Object-Oriented Environment

92 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

5. CONCLUSION AND FUTURE WORK

In this paper, we have enlisted Python plagiarism attacks from four classes of

Basic Data Structure course. For each class, we have taken all programming
assignment that were submitted during the even semester of 2016/2017 academic

year. Such assignments are expected to represent Python source codes on object-
oriented environment. In addition to providing plagiarism attack list, there are three
additional findings that can be deducted. First, plagiarism attack trend in both

object-oriented and procedural environment are considerably similar to each other.
Second, there is no need to handle plagiarism attacks on both environments

separately since the frequency distribution of Python plagiarism attacks in both
environments are considerably similar. Last, plagiarism attacks in object-oriented
environment is more monotonous than such attacks in procedural environment since

the number of distinct plagiarism attacks on our work is significantly lower than
such number on Karnalim’s work.

For future work, we plan to use this work, along with Karnalim’s work [3], as a
baseline to develop a Python-targeted plagiarism detection system. Moreover, we
also plan to enlist plagiarism attacks on other Python-related courses to strengthen

and enrich our findings.

REFERENCES

[1] H. A. Maurer, F. Kappe, and B. Zaka, “Plagiarism-a survey.,” Journal of
Universal Computer Science, vol. 12, no. 8, pp. 1050–1084, 2006.

[2] F. S. Rabbani and O. Karnalim, “Detecting Source Code Plagiarism on .NET
Programming Languages using Low-level Representation and Adaptive
Local Alignment,” Journal of Information and Organizational Sciences, vol.

41, no. 1, pp. 105–123, Jun. 2017.

[3] O. Karnalim, “Python Source Code Plagiarism Attacks on Introductory

Programming Course Assignments,” Themes in Science and Technology
Education, vol. 10, no. 1, 2017. In Press

[4] Z. A. Al-Khanjari, J. A. Fiaidhi, R. A. Al-Hinai, and N. S. Kutti,

“PlagDetect: a Java programming plagiarism detection tool,” ACM Inroads,
vol. 1, no. 4, p. 66, Dec. 2010.

[5] D. Ganguly, G. J. F. Jones, A. Ramírez-de-la-Cruz, G. Ramírez-de-la-Rosa,
and E. Villatoro-Tello, “Retrieving and classifying instances of source code
plagiarism,” Information Retrieval Journal, pp. 1–23, Sep. 2017.

[6] M. Mozgovoy, S. Karakovskiyz, and V. Klyuev, “Fast and reliable
plagiarism detection system,” in 2007 37th annual frontiers in education

conference - global engineering: knowledge without borders, opportunities
without passports, 2007, p. S4H–11–S4H–14.

[7] A. Jadalla and A. Elnagar, “PDE4Java: Plagiarism Detection Engine for Java

source code: a clustering approach,” International Journal of Business
Intelligence and Data Mining, vol. 3, no. 2, pp. 121–135, 2008.

[8] J.-S. Lim, J.-H. Ji, H.-G. Cho, and G. Woo, “Plagiarism detection among
source codes using adaptive local alignment of keywords,” in Proceedings of

Computer Engineering and Applications Vol. 6, No. 3, 2017

ISSN: 2252-4274 (Print) 93

ISSN: 2252-5459 (Online)

the 5th International Confernece on Ubiquitous Information Management

and Communication - ICUIMC ’11, 2011, p. 1.

[9] Y.-C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, “Program
Characterization Using Runtime Values and Its Application to Software

Plagiarism Detection,” IEEE Transactions on Software Engineering, vol. 41,
no. 9, pp. 925–943, Sep. 2015.

[10] O. Karnalim, “A Low-Level Structure-based Approach for Detecting Source
Code Plagiarism,” IAENG International Journal of Computer Science, vol.
44, no. 4, 2017. In Press

[11] Z. Duric and D. Gasevic, “A Source Code Similarity System for Plagiarism
Detection,” The Computer Journal, vol. 56, no. 1, pp. 70–86, Jan. 2013.

[12] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding Plagiarisms among a
Set of Programs with JPlag,” Journal of Universal Computer Science, vol. 8,
no. 11, pp. 1016–1038, 2002.

[13] K. Pearson, “Note on Regression and Inheritance in the Case of Two
Parents,” Proceedings of the Royal Society of London, vol. 58. Royal

Society, pp. 240–242.

Oscar Karnalim, Aldi Aldiansyah

Python Source Code Plagiarism Attacks in Object-Oriented Environment

94 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

