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ABSTRACT 

This paper presents a Lyapunov-based switched trajectory tracking control design 

for a rear-steered automated guided AGV (AGV). Given a moving reference whose 

position and orientation have to be tracked by the AGV, the main objective of the 

controller is to reduce AGV’s distance from the reference while adjusting its 

orientation. The distance reduction issue is important, especially in huge warehouses 

operating a group of AGVs, since the rate of AGV-to-reference distance reduction 

contributes to the possibility of AGV-to-AGV collision. A set of control algorithms 

is proposed to handle large AGV’s orientation. Simulations that show the 

performance of the proposed method is presented. 

Keywords: Tracking Control, Automated Guided AGV, Distance Reduction, 

Collision Avoidance.   

 

1. INTRODUCTION 

 

Trajectory tracking for AGVs has been studied for decades. This issue becomes 

important when an AGV groups start to operate in a large workspace, such as 

warehouse. Here, one of the aspects of a warehouse is order-picking mechanism [1]. 

In association with the use of AGVs, warehouse management area mostly discusses 

about mechanism to generate AGV trajectory plan [2-4]. In robotics, the realizations 

of the plan have been addressed under a typical terminology, i.e., “trajectory 

tracking”. 

A huge number of tracking strategies have been developed. Roughly speaking, 

developments of tracking algorithm for AGVs can be divided into two directions: 

first, path tracking which focused on the placement of a physical AGV to a planned 

path. Research on this issue was established in [5-9]. The second type of this study 

is trajectory tracking, which is focused on the placement of physical AGV to the 

reference at any time instance. Several works applied Cartesian coordinate system to 

express the AGV’s configuration [10-12]. Such the type of methods has a 

complexity in controlling AGV-to- target distance that is necessary especially for 

the problem of tracking moving preplanned references in multiple AGV systems. 

Inter-AGV collision avoidance has been an interesting issue. Various approaches 

to this problem have been proposed. They can be categorized according to two 

paradigms: those involving communication among the AGVs in a group, and those 

with no such communication. In the first paradigm, the communication among 

AGVs became an important consideration regarding to performance of decentralized 

control and coordination [5-10]. In [6], the problem of conflict resolution for 

multiple AGVs was treated, focusing on the goal reachability and safety guarantee. 
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In this approach, right-turn-only policy was followed. In [7], decentralized 

navigation of groups of nonholonomic wheeled mobile robots was proposed. 

Maintenance of inter-robot distances while the leader moved along collision-

avoidance trajectories was focused. In line with [6], the work in [8] proposed an 

approach named Resource Allocation Systems for free-ranging multi-AGV systems. 

Bekris et al. investigated the coordination of the motions of second-order robots in 

consideration of planning-cycle differences [10]. 

A plan in warehouse management is a good plan if it is trackable in a finite time. 

The tractability of the plan is indicated by the ability of the controller to reduce the 

distance between the AGV and the plan. This problem can be solved by, first, using 

a polar coordinate system, since one of its axis can represent such the distance. 

Some trajectory tracking controls using polar coordinate system are reported in [12-

18]. The works in [17] and [18], for instance, proposed a class of model predictive 

control for trajectory tracking. In [14], an error-based control for robust trajectory 

tracking for unmanned ground AGVs.   

However, most publications lack of concerning the reducing AGV-to-reference 

distance under extreme AGV’s orientation. This issue is important, since mostly, at 

the beginning the initial configuration of the AGV is not the same with the plan. 

Moreover, it is possible that the AGV starts to track the assigned plan from extreme 

orientation in polar coordinate system. If the AGV disable to track the plan, under a 

crowded circumstance, it is possible that a collision between the AGV to another 

single one is inevitable. 

In this paper, a control algorithm is designed to drive a rear-steered AGV to its 

respective reference focusing on decreasing distance between the AGV and the 

reference. The contribution of this study is twofold: first, the design of controller to 

minimize collision to other AGVs with their own plans. Second, the controller 

answers question of reducing AGV-to-reference distance even the initial navigation 

angles are extreme. The organization of this paper is as follows. Section 2 describes 

the problem definition; Section 3 explains the proposed controller design; Section 4 

presents the simulation results; and Section 5 concludes this paper. 

 

 

2. PROBLEM DEFINITION 

 

Suppose that there exists a rear-steered AGV whose location is represented by the 

coordinate (𝑥, 𝑦) and orientation by 𝛿 as shown in Figure 1. The AGV has to drive 

its controlled point 𝑃 with traction velocity 𝑢 and angular velocity 𝜔; 𝑙 represents 

the distance between the centers of actuation 𝑂. The AGV itself has two actuators, 

i.e., velocity 𝑣 and steering 𝛿. The kinematic model of the AGV is given as,  

 

𝑥 = 𝑣cos𝜃cos𝛿                                          (1) 

 

𝑦 = 𝑣sin𝜃cos𝛿                                           (2) 

 

  𝜃 = −(𝑣 𝑙 )sin𝛿                                        (3) 

 

The AGV has to track a reference whose location is represented by (𝑥𝑟 , 𝑦𝑟) and 

orientation by 𝜃𝑟 , as shown in Figure 2. Our assumption is that the configuration 
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(velocity and orientation) of the reference is predefined and is represented by its 

traction and angular velocities, i.e., 𝑣𝑟  and 𝜔𝑟 , respectively. 

For tracking control design purpose, we define navigation variables (𝜌, 𝛼, 𝜑) 

formulated as 

 

𝜌 =  𝛥𝑥2 + 𝛥𝑦2                                       (4) 

 

𝛼 = arctan2(𝛥𝑦, 𝛥𝑥) − 𝜃                         (5) 

 

𝜑 = 𝜃𝑔 − arctan2(𝛥𝑦, 𝛥𝑥)                       (6) 

 

 

where 𝛥𝑥 = 𝑥𝑟 − 𝑥, 𝛥𝑦 = 𝑦𝑟 − 𝑦. In this paper, we address a problem of trajectory 

tracking control for extreme navigation angles 𝛼 and 𝜑, i.e., at least one of the 

following conditions occurs:  

 

𝜋 2 < 𝛼 ≤ 𝜋 ∪ −𝜋 < 𝛼 < −𝜋 2                  (7) 

 

𝜋 2 < 𝜑 ≤ 𝜋 ∪ −𝜋 < 𝜑 < −𝜋 2                  (8) 

 

 

  

 

  

  

 

 

 

 

FIGURE 1. Kinematic model of an AGV FIGURE 2. Trajectory tracking scenario
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FIGURE 3. Multiple-AGV trajectory tracking problem near a conflict point 

  

The situation to address is shown in Figure 3. Suppose that two AGVs follow 

their own plan (reference) and assume that their plans have intersection at point P. 

Assume that the plan is predefined such that if each AGV occupies the desired 

trajectory, inter-AGV collision can be avoided. Therefore, a control mechanism 

must be designed to reach the collision-free motion. However, since the AGVs are 

nonholonomic, the orientations of the AGVs contribute to the motion. In most cases, 

initial orientation sometimes prohibits the AGV to decrease the AGV-to-AGV 

distance. 

The extreme initial navigation angles appear in [14-15] for point stabilization 

problem. In the problem, the control law has no effect of reference’s velocities since 

its velocities are zero. However, for the case of moving reference, the reference’s 

motion influences the evolution of navigation variables in Equations (4)-(6). The 

evolution of the navigation variables is described as follows, 

 

                  𝑞 (𝑡) = 𝑓 𝑞, 𝑞(0) = 𝑞0    (9) 
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               𝑞(𝑡) =  𝜌 𝛼 𝜑 𝑇                                                (11) 

 

 

The objective of this paper is twofold. First is to design a trajectory tracking 

algorithm such that, 

 

                                              lim
𝑡→∞

𝜌 ≤ 𝜌ss                                               (12) 
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                                              lim
𝑡→∞

𝛼 ≈ 0, (13) 

 

                                              lim
𝑡→∞

𝜑 ≈ 0,                                            (14) 

 

where 𝑡 represents time and 𝜌ss is maximum steady-state distance. Second, the paper 

identifies necessary and sufficient conditions such that the distance is kept decrease. 

The dynamics of the actuator is derived by the following steps. Note that the 

parameters used in the dynamics are described in Table 1. The torques applied to the 

driving and steering motors are formulated as, 

 

                             𝜏dr = 𝐼dr𝜔 dr + 𝐵dr𝜔dr + 𝐹dr𝑟dr.              (15) 

 

                                  𝜏𝛿 = 𝐼𝛿𝜔 𝛿 + 𝐵𝛿𝜔𝛿                               (16) 

 

 

TABLE 1.  

Dynamics symbols and definitions 

 

Symbol Definition   

𝜏dr and 𝜏𝛿  Torque produced by the driving and steering motors, 

respectively. 
 

𝐹dr Traction force applied to the driving motor. 

 
 

𝐼dr and 𝐼𝛿  Moment of inertia of the driving wheel controlled by 

the driving and steering motors, respectively. 

 

 

𝜔drand 𝜔𝛿  angular velocity of the driving and steering motors, 

respectively. 

 

 

𝐵dr and 𝐵𝛿  viscous friction coefficient of the driving and 

steering motors, respectively. 

 

 

𝑟dr radius of the driving wheel. 

 
 

𝑘a, dr and 𝑘a, 𝛿  torque constant of the driving and streering motors, 

respectively. 

 

 

𝑘b, dr and 𝑘b, 𝛿  voltage constant of the driving and steering motors, 

respectively. 

 

 

𝑅dr and 𝑅𝛿  electric resistance constants of the driving and 

steering motors, respectively. 

 

 

𝑢𝑣  and 𝑢𝛿  input voltage applied to the driving and steering 

motors, respectively. 
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The model of driving and steering motors are described as 

 

 𝜏dr =  𝑘a, dr(𝑢𝑣 − 𝑘b, dr𝜔dr) /𝑅dr,                                 (17) 

 

           𝜏𝛿 =  𝑘a, 𝛿(𝑢𝛿 − 𝑘b, 𝛿𝜔𝛿) /𝑅𝛿 .                                    (18) 

 

 

Substitute Equation (17) to Equation (15) yields 

 
𝐼dr𝑅dr

𝑘a, dr
𝜔 dr +  

𝐵dr𝑅dr+𝑘a, dr𝑘b, dr

𝑘a, dr
 𝜔dr + 𝐹dr𝑅dr𝑟dr = 𝑘𝑃,𝑣(𝑣 dr − 𝑣dr) − 𝑘𝐷,𝑣𝑣 dr.             

(19) 

 

 

Since 𝜔dr =
𝑣dr

𝑟dr
, then Equation (19) is rewritten as 
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where 
*

drv  is the planned driving velocity of the AGV. Since 
dr
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drdr
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v
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 ,  

then Equation (20) is rewritten as 
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Substitution of (18) to (16) yields 
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where *  is the planned steering angle of the AGV. Time derivative of Equation 

(22) is as follow, 



 

 
Computer Engineering and Applications Vol. 7, No. 2, June 2018 

 
 

ISSN: 2252-4274 (Print)         81 
  ISSN: 2252-5459 (Online) 

     









  
















 ,D

a,

b,a,

a,

k
k

kkRB

k

RI
0)( *

,P   k  (23) 

3. CONTROL DESIGN 

 

A control algorithm is designed to accommodate extreme configuration. The 

proposed control is Lyapunov-based control which is consists of two parts, i.e., 

distance reduction and orientation controls. 

 

3.1 DISTANCE-REDUCTION CONTROL 

 

The purpose of distance control is to drive the AGV such that Equation (12) is 

satisfied. For this type of control, we propose switched traction velocity control, as 

explained in Propositions 2 and 3. The idea is in this control, we regard only one 

actuator, i.e., 𝑣 and the other one, i.e., steering actuator 𝛿 as a parameter. 

Proposition 1: The following properties lead to𝜌 < 0: 

 

                                                1) 𝑣cos𝛼 > 0.                                      (24) 

 

                                  2) 𝑣cos𝛼 < 0 and 𝑣𝑟cos𝜑 < 𝑣cos𝛼.                 (25) 

 

 

Proof: Suppose that 𝜌 < 0. The first equation of Equation (10) can be 

rewritten as 

 

                                        𝑣𝑟cos𝜑 − 𝑣cos𝛼cos𝛿 = 𝑤,                           (26) 

 

 

where 𝑤 < 0. (26) can be rewritten as 

 

                                              cos𝛿 =
−𝑤+𝑣𝑟cos𝜑

𝑣cos𝛼
.                                    (27) 

 

 

Since 0 ≤ cos𝛿 ≤ 1, then the value of the right side of (27) must be in the interval 

of [0, 1]. In other words, 0 ≤  −𝑤 + 𝑣𝑟cos𝜑  𝑣cos𝛼 −1 ≤ 1. Suppose that 

𝑣cos𝛼 > 0 and 𝑣𝑟cos𝜑 ≥ 0. Then we have the following admissible range of 𝑤. 

 

                               𝑣𝑟cos𝜑 ≥ 𝑤 ≥ −𝑣cos𝛼 + 𝑣𝑟cos𝜑                          (28) 

 

 

It is clear that 𝑣𝑟cos𝜑 − 𝑣cos𝛼 < 𝜌 < 0, which confirms that the lower bound of 𝑤 

is negative. In addition, since 𝑣𝑟cos𝜑 ≥ 0, the upper bound of 𝑤 is zero to satisfy 

Equation (26). Therefore, 𝑤 spans in the interval −𝑣cos𝛼 + 𝑣𝑟cos𝜑 ≤ 𝑤 ≤ 0. For 
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𝑣cos𝛼 > 0 and 𝑣𝑟cos𝜑 ≤ 0, the admissible range of 𝑤 is the same with Equation 

(28). Since the upper bound of 𝑤 is negative, then in this condition 𝜌  is always 

negative. 

The next case is when 𝑣cos𝛼 < 0 and 𝑣𝑟cos𝜑 ≥ 0. In this situation, we have the 

following admissible range of 𝑤. 

 

                𝑣𝑟cos𝜑 ≤ 𝑤 ≤ −𝑣cos𝛼 + 𝑣𝑟cos𝜑.                  (29) 

 

 

Since the lower and upper bounds of 𝑤 is non-negative, we can conclude that 𝜌  is 

always positive in this condition. The last condition to check is when 𝑣cos𝛼 < 0 and 

𝑣𝑟cos𝜑 < 0. The admissible range of 𝑤 is in the same form with Equation (29). 

Hence, the upper bound of 𝑤 would be negative if and only if 𝑣𝑟cos𝜑 < 𝑣cos𝛼.  

Proposition 2: Suppose that cos𝛿 > 0. Define 𝜓 = cos𝛼cos𝛿. For 𝑣𝑟cos𝜑 < 0, 

the following traction velocity control. 

 

                 𝑣 = −𝑘𝑣,1sgn 𝜓   𝑣𝑟cosφψ−1                           (30) 

 

 

where 0 < 𝑘𝑣,1 < 1 is a constant, makes the AGV-to-reference 𝜌 closer to zero. 

Proof: Define a Lyapunov candidate function 

 

                            𝑉1 = 0.5𝑘𝜌𝜌
2.                                                        (31) 

 

 

The first time derivative of 𝑉1 is  

 

                          𝑉 1 = 𝑘𝜌𝜌𝜌 .                                                               (32) 

 

 

Substitution of Equation (11) to Equation (32) yields 

 

                     𝑉 1 = −𝑘𝜌𝜌𝑣𝜓 + 𝑘𝜌𝜌𝑣𝑟cos𝜑                                        (33) 

 

 

The AGV-to-reference 𝜌 tends to zero if 𝑉 1 < 0. Under the condition of 

𝑣𝑟cos𝜑 < 0 and 𝜓 < 0, the substitution of Equation (30) to Equation (33) yields 

𝑉 1 = − 1 − 𝑘𝑣,1  𝑘𝜌𝜌 𝑣𝑟cos𝜑 ,which can be less than zero if and only if 0 <

𝑘𝑣,1 < 1. The similar analysis for 𝑣𝑟cos𝜑 < 0 and 𝜓 > 0 yields 𝑉 1 =  𝑘𝑣,1  −

1𝑘𝜌𝜌𝑣𝑟cos𝜑, which leads to 𝑉1<0 if 0<𝑘𝑣,1<1.  

Proposition 3: Suppose that cos𝛿 > 0. For 𝑣𝑟cos𝜑 > 0, the following traction 

velocity control 

               𝑣 = 𝑘𝑣,2sgn 𝜓     𝑣𝑟cosφψ−1 + 𝑣  ,                          (34) 
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where 

 

                     𝑘𝑣,2 >  1 +  𝜓 𝑣 / 𝑣𝑟cos𝜑  −1                                  (35) 

 

 

is a constant, makes the AGV-to-reference 𝜌 closer to zero. 

Proof: The proof can be made by using the same Lyapunov candidate function in 

Proposition 2. Under the condition of 𝑣𝑟cos𝜑 > 0 and 𝜓 < 0, the substitution of 

Equation (34) to Equation (33) yields 𝑉 1 = 𝑘𝜌𝜌  𝑣𝑟cos𝜑 − 𝑘𝑣,2   𝑣𝑟cos𝜑 +  𝜓 𝑣   , 

which is negative definite if  𝑘𝑣,2 satisfies Equation (35). The same result can be 

obtained for the other condition, i.e., 𝑣𝑟cos𝜑 > 0 and 𝜓 > 0. 

 

3.2 ORIENTATION CONTROL 

The purpose of orientation control is to drive the AGV such that Equations (13)-

(14) are satisfied. Here, as explained in Propositions 4 and 5, we regard 𝛿 as the 

actuator and 𝑣 as a parameter. Define a constant 𝜆 > 0 and a coefficient 𝑘𝑣,3 that 

describes the relation between 𝑣 and 𝑣𝑟  as follows. 

 

                              𝑣𝑟sin𝜑 = 𝑘𝑣,3𝑣sin𝛼                                         (36) 

 

 

In addition, define 
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h 
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and 𝑕 ∈ [0, 1].  
Define another Lyapunov candidate function 

 

                                            𝑉2 = 0.5𝑘𝜌 𝛼
2 + 𝜑2 ,                           (39) 

 

 

 

where 𝑘𝜌 > 0 is constant. The first time derivative of 𝑉2 is 

                             𝑉 2 = 𝑉 21 + 𝑉 22.                                     (40) 
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where 

  

                   𝑉 21 =  𝑣𝑟sin𝜑 − 𝑣sin𝛼cos𝛿  𝜑 − 𝛼 𝜌         (41) 

 

                            𝑉 22 = (𝛼𝑣 𝑙 )sin𝛿 + φω𝑟                         (42) 

 

 

We can state the following proposition. 

Proposition 4: The following steering control 
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otherwise,,tan

,01/if,tan
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hh
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where 𝛾1 =   𝑘𝑣,3 + 𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  
−2

− 1, 𝜆1 > 0,  and 𝑘𝑣,3 > 0, drives 𝛼 

and 𝜑 to zero, under the necessary condition of 

 

                          𝑘𝑣,3 + 𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  
2

≤ 1               (44) 

 

 

Proof:  We have to proof that 𝑉 21 ≤ 0 for all 

𝑉 21 =  𝑣𝑟sin𝜑 − 𝑣sin𝛼cos𝛿  𝜑 − 𝛼 𝜌 , 𝛼 ∈ [−𝜋, 𝜋] and 𝜑 ∈ [−𝜋, 𝜋]. 
Substitution of Equation (37) to Equation (41) yields. 

 

     𝑉 21 =  𝑣𝑟sin𝜑 − 𝑣sin𝛼 1 − 𝑕2  𝜑 − 𝛼 𝜌 .                 (45) 

 

 

Therefore Equation (45) can be rewritten as 

 

       𝑉 21 =  𝑘𝑣,3 −  1 − 𝑕2 1 2  𝑣sin𝛼  𝜑 − 𝛼 𝜌                 (46) 

 

 

 

 

Define 𝑕 as follows. 
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                 








otherwise,,

],0[ if,




h

               (47) 

 

 

where,  

 

𝜙 =  1 −  𝑘𝑣,3 + 𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  
2

                    (48) 

 

 

Substitution of 𝑕 in Equation (47) to Equation (46) yields 

 

     𝑉 21 = −𝜆12𝑣2sin
2𝛼 𝜑 − 𝛼 2 < 0.   (49) 

 

 

Equation (49) concludes that 𝑉 21 < 0 under the necessary condition Equation (44). 

The control law in Equation (43) can be obtained from substituting Equation (47) to 

Equation (37) and Equation (38). 

 Proposition 5: The following control law 

 
















otherwise,,tan

,01if,tan

2

1

2

2

1






hh

            (50) 

 

 

where 

  

𝛾2 =   
 𝑘𝑣,3+𝜆12𝜌𝑣sin𝛼 𝜑−𝛼  

2

1− 𝑘𝑣,3+𝜆12𝜌𝑣sin𝛼 𝜑−𝛼  
2 

−1

           (51) 

 

 

drives 𝑉 21 < 0 and 𝑉 22 < 0. 

Proof: Let 𝑕 in Equation (38) is defined as 

 

𝑕 = −𝑙𝜆2
2𝛼𝑣.                (52) 

Substitution of 𝑕 in Equation (52) to Equation (42) yields 

 

𝑉 22 = −𝛼2𝑣2𝜆2
2 + φω𝑟 .   (53) 
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In addition, to make Equation (51) decreases 𝑉21, 𝜆2 must be set such that the 

following equation is satisfied; 

 

 1 −  𝑘𝑣,3 + 𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  
2

= −𝑙𝜆2
2𝛼𝑣. (54) 

 

 

From Equation (54), we obtain the formulation of 𝜆2 as follows; 

 

              𝜆2 =   1 −  𝑘𝑣,3 + 𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  
2

 /𝑙2𝛼2𝑣2
4

.         (55) 

 

 

It is straightforward that substitution of 𝜆2 in Equation (55) to Equation (52) 

followed by substitution of Equation (52) to Equation (37) yields Equation (51).  

Proposition 6: The necessary condition to guarantee 𝑉 2 < 0 is 

 

  𝑘𝑣,3 = 𝑘𝑣,4 1 − 2𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  .                   (56) 

 

 

where 0 < 𝑘𝑣,4 ≤ 1 is a constant.  

Proof: From the control law in Equation (43), it is clear that 𝑘𝑣,3 ≤ 1 −
𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  to make the argument of tan−1 real. Also, from the control law 

in Equation (51), the range of 𝑘𝑣,3 must be 𝑘𝑣,3 ≥ −𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  to guarantee 

𝑉 2 < 0. In summary, we can conclude that the range of 𝑘𝑣,3 is  

 

                    −𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼 ≤ 𝑘𝑣,3 ≤ 1 − 𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼              (57) 

 

 

By letting 𝑘𝑣,3 = 𝑘𝑣,4 1 − 2𝜆12𝜌𝑣sin𝛼 𝜑 − 𝛼  , we can guarantee that 𝑘𝑣,3 satisfies 

Equation (42). Therefore, this proposition is proofed. According to Equation (56), 

the range of 𝑘𝑣,3 can be enlarged by increasing the value of 𝜆1. 

  

 

4. SIMULATION RESULTS 

 

For the AGV, 𝑥 = 10 m, 𝑦 = 10 𝑚, 𝜃 = 45°. The reference starts from 𝑥𝑟 =
10 m, 𝑦𝑟 = −10 m, 𝜃 = 90°. Therefore, the initial navigation variables are 𝜌 =
20 𝑚, 𝛼 = −135°, and 𝜑 = 180°. The initial values of the AGV’s actuators are 

𝑣 = 0 m/s and 𝛿 = 0 °. The reference’s velocities are 𝑣𝑟 = 2 m/s and 𝜔𝑟 = 10 °/s. 

Here, the following parameters are applied: 𝜆1 = 100,  𝑘𝑣,4 = 0.1, 𝑘𝑣,4 = 0.5 

and 𝑘𝑣,4 = 0.9. The generated path for 𝑘𝑣,4 = 0.1 is shown in Figure4. All 

simulations show similar pattern in distance reduction. There are three phases of 

distance reduction under extreme initial orientations, as shown in Figure 5. 
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FIGURE 4. The resulted trajectory for 𝑘𝑣,4 = 0.1. 

The first phase is the motion of turning the orientation such that 𝛼 goes to the 

interval [− 𝜋 2  rad, 𝜋 2  rad]. In the simulations with 𝑘𝑣,4 = 0.1, 𝑘𝑣,4 = 0.5, and 

𝑘𝑣,4 = 0.9, this phase occurs in time interval 𝑡 = [0 𝑠, 4.5 𝑠) , 𝑡 = [0 𝑠, 4.8 𝑠) , and 

𝑡 = [0 𝑠, 4.5 𝑠) , respectively. 

 

 

FIGURE 5. The resulted AGV-to-reference distance in various 𝑘𝑣,4. 
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FIGURE 6. The resulted progress of 𝛼 under various𝑘𝑣,4. 

 

 

FIGURE 7. The resulted progress of 𝜑 in various 𝑘𝑣,4 

The second phase is adjusting 𝜑 goes to the interval [−𝜋 2  rad, 𝜋 2  rad]. In 

the simulation with 𝑘𝑣,4 = 0.1, 𝑘𝑣,4 = 0.5, and 𝑘𝑣,4 = 0.9 this phase occurs in time 

interval 𝑡 = [4.5 𝑠, 13 𝑠) , 𝑡 = [4.8 𝑠,  6.0 𝑠), and 𝑡 = [4.5 𝑠, 12.8 𝑠) , respectively. 

The visualizations of the results are depicted in Figure 6 and 7. According to the 

three simulations, the distance reduction is slower than the first phase. This 

phenomenon has a strong relationship to the trend of trajectory of 𝜑 that moves to 

zero.  

The tracking process then goes to the last phase, i.e., zeroing the AGV-to-

reference distance. As mentioned in [15], making 𝜌 staying zero as time goes to 

infinity is complicated. The maximum steady-state distance 𝜌ss is approximately 

0.3-0.5 m.  

 

 

5. CONCLUSIONS 

 

A trajectory tracking control algorithm with AGV-reference distance paradigm 

for rear-steered AGV is proposed. The main purpose of the controller is to reduce 



 

 
Computer Engineering and Applications Vol. 7, No. 2, June 2018 

 
 

ISSN: 2252-4274 (Print)         89 
  ISSN: 2252-5459 (Online) 

AGV-to-reference distance under the extreme initial navigation variables. 

Simulations show that the process of tracking consists of three phases: adjusting 𝛼 to 

zero followed by adjusting 𝜑 to zero, and finally make the AGV closer to its 

reference by driving 𝜌 closer to zero. This research is planned to continue to some 

aspects of this type of control, such as determining the maximum allowable time to 

drive the AGV to the maximum steady-state distance.  
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