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ABSTRACT 

Non-holonomic leader-follower robot must be capable to find its own position in 

order to be able to navigate autonomously in the environment this problem is known 

as localization. A common way to estimate the robot pose by using odometer. 

However, odometry measurement may cause inaccurate result due to the wheel 

slippage or other small noise sources. In this research, the Extended Kalman Filter 

(EKF) is proposed to minimize the error or the inaccuracy caused by the odometry 

measurement. The EKF algorithm works by fusing odometry and landmark 

information to produce a better estimation. A better estimation acknowledged 

whenever the estimated position lies close to the actual path, which represents a 

system without noise. Another experiment is conducted to observe the influence of 

numbers of landmark to the estimated position. The results show that the EKF 

technique is effective to estimate the leader pose and orientation pose with small 

error and the follower has the ability traverse close to leader based-on the actual 

path. 

Keywords: Estimator, Extended Kalman Filter, Localization, Odometry, Leader-

Follower Robot 

 

1. INTRODUCTION 

 

In order to navigate safely and reliably, an autonomous mobile robot must be 

capable of finding out its location relative to the environment independently 

[1][2][3]. Localization is one important component in robot navigation system in 

terms of position and orientation (x, y, θ). The goal of the localization is to keep 

track of the position while the robot is navigating through the environment [3][4]. 

According to the methods in determining the location, a robot has access to two 

kinds of information, relative or absolute [5][6]. By relative, also known as dead-

reckoning, the robot collecting and integrating its information from different sensors 

where the integration is started from the initial position and continuously updated 

through times. Absolute method is different from the other one, because the robot 

does not need to derive some integrated sequence of measurement to gain 

information, but the robot itself does a direct measurement to supply information 

[3][7].  

However, the fact that mobile robots have some unbounded growth of time 

integration errors along their duties to traverse their environment is undeniable 

[8][9]. The wheels attached to mobile robot are susceptible to slippage. It is known 

that slippage can disturb the sensor reading. Mathematical modeling, including 

sensor modeling may cause some inaccuracies in a system. It is obvious those errors 
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will continue to grow if they are left untreated [1][7][8]. A mobile robot with 

untreated accumulating errors will behave unpredictable from what it is expected to 

behave. Hence, the mobile robot control must be overcome the limitation, in order to 

reach the target with small error. 

In this paper, the Extended Kalman Filter (EKF) is proposed to reduce the 

accumulation error in the actuator.  The information gathered by relative and 

absolute manners will be fused to suppress the error, resulting in leader-follower 

mobile robot could localize itself [9]. EKF is selected due to it produces an optimal 

algorithm based-on recursive filter. It is an estimator widely used in a nonlinear 

system. EKF will be used to fuse the measurement information from odometer and 

landmark in order mobile robot could localize itself accurately [9] [10]. The result of 

this research will be presented as a performance graph consists of x, y, θ coordinates 

and the error graph. The rest of the paper is organized as follows. Section II will 

cover method used in this research. Section III will provide the experimental results 

and analysis, and finally, the conclusion will be presented in section IV. 

 

 

2. LEADER-FOLLOWER LOCALIZATION 

The EKF has a cycle that consists of prediction phase and correction phase [11] 

[12]. As a cycle, prediction phase is where the mobile robot predicts its next location 

with a prior knowledge, whereas the correction phase will correct the corrupted 

predicted phase. However, to enable the mobile robot to move from one pose to 

another pose, it is necessary to define a motion model before. 

 

2.1 LEADER-FOLLOWER KINEMATIC SYSTEM 

 

The kinematic system of the leader follower robot is generated with the 

parameters that will be measured are the relative distance between the leader and the 

follower robot [2] [10]. The modelling of leader-follower system has been derived 

directly by the kinematic analysis of relative robot follower along the x and y 

coordinates associated with the robot leader. The leader L has configuration vector 

 𝑥𝐿 , 𝑦𝐿 , 𝜃𝐿 
𝑇 while the follower F has a vector  𝑥𝐹 , 𝑦𝐹 , 𝜃𝐹 

𝑇 . The control inputs of 

the leader and the follower are the linear and angular velocities  𝑣𝐿 , 𝜔𝐿 
𝑇  and 

 𝑣𝐹 , 𝜔𝐹 
𝑇 , respectively [10]. 

The relative distance between leader and follower must be determine, thus they 

can be move in the same trajectory. To illustrate the relative position between the 

robots in Cartesian coordinates Figure 1(b) is utilized, it must to projected the 

relative distance along the x and y directions. In x-y Cartesian coordinates, the 

distance between the robot leader and the follower robot is 𝑙. By using the properties 

of trigonometric functions i.e., a.b=|a| . |b| cos𝜃, the rotation matrix Equation for 

robot follower is obtained shown in Equation (1) as follow [11], 

 

 

𝑥𝐹

𝑦𝐹

𝜃𝐹

 =  
  𝑐𝑜𝑠𝜃𝐹       𝑠𝑖𝑛𝜃𝐹       0 
−𝑠𝑖𝑛𝜃𝐹     𝑐𝑜𝑠𝜃𝐹       0 
   0                0           1

                    (1) 
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FIGURE 1. Leader-follower kinematic system 

 

Based on Figure 1, and assuming the relative distance Equation can be derived 

using the matrix rotation in Equation (3) the relative robot leader's distance to the 

follower robot is defined in Equation (5). Where the relative position the follower 

robot along the x direction is 𝑙𝑥  and along the y direction is 𝑙𝑦  with relative 

orientation 𝜃. 

 

 
𝑙𝑥
𝑙𝑦
𝑒𝜃

 =  
 −𝑐𝑜𝑠𝜃𝐿      − 𝑠𝑖𝑛𝜃𝐿      0 

  𝑠𝑖𝑛𝜃𝐿        − 𝑐𝑜𝑠𝜃𝐿      0 

   0                     0             − 1

  
𝑋𝐿 − 𝑋𝐹

 𝑌𝐿 − 𝑌𝐹

 𝜃𝐿 − 𝜃𝐹

   (2) 

 

 

If the position of the leader robot (𝑋𝐿 , 𝑌𝐿) is determined and (𝑙𝑥 ,𝑙𝑦 ) are known 

and fixed to achieve and maintain the desired formation, parameter (𝑙𝑥 , 𝑙𝑦 )  must be 

controlled, then the position with respect to the robot leader can be determined. By 

controlling 𝑙𝑥  → 𝑙𝑥
𝑑  where 𝑙𝑥

𝑑  is the desired relative position along the x direction and 

𝑙𝑦→ 𝑙𝑦
𝑑 , where 𝑙𝑦

𝑑  is the desired relative position along the y direction. In the normal 

conditions, the relative distance between the leader's robot and the follower robot is 

𝑙𝑑 , it needs to be simultaneously projected and to control the movement of the 

follower robot against the leader robot by using Equations (3) to (6) as follow [11], 

 

𝑙𝑥
𝑑 = 𝑙𝑑𝑐𝑜𝑠𝜑𝑑  or,    (3) 

 

𝑙 𝑥
𝑑 = 𝑙 𝑑𝑐𝑜𝑠𝜑𝑑 − 𝑙𝑑𝜑 𝑑𝑠𝑖𝑛𝜑𝑑    (4) 

 

𝑙𝑦
𝑑 = 𝑙𝑑𝑠𝑖𝑛𝜑𝑑  or,    (5) 

 

𝑙 𝑦
𝑑 = 𝑙 𝑑𝑠𝑖𝑛𝜑𝑑 − 𝑙𝑑𝜑 𝑑𝑐𝑜𝑠𝜑𝑑    (6) 
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The desired relative distance 𝑙𝑑  between the robot leader and the follower robot is 

required to be constant or 𝑙𝑑= 𝑙0, whereas the relative angle 𝜑𝑑   is varied with time. 

Therefore, the Equation (4) and (6) becomes Equation (7) and (8), 

 

𝑙 𝑥
𝑑 = −𝑙0𝜑 

𝑑𝑠𝑖𝑛𝜑𝑑      (7) 

 

𝑙 𝑦
𝑑 = −𝑙0𝜑 

𝑑𝑐𝑜𝑠𝜑𝑑     (8) 

 

 

From Equation (2) the model of 𝑙 𝑥  as follow, 

 

 𝑙 𝑥 = − 𝑋 𝐿 − 𝑋 𝐹 𝑐𝑜𝑠𝜃𝐿 +  𝑋𝐿 − 𝑋𝐹 𝜃 𝐿𝑠𝑖𝑛𝜃𝐿 −  𝑌 𝐿 − 𝑌 𝐹 𝑠𝑖𝑛𝜃𝐿 +  𝑌𝐿 − 𝑌𝐹 𝜃 𝐿𝑐𝑜𝑠𝜃𝐿 

     = 𝑙𝑦𝜃 𝐿 + 𝑋 𝐹𝑐𝑜𝑠𝜃𝐿 + 𝑌 𝐹𝑠𝑖𝑛𝜃𝐿 − 𝑋 𝐿𝑐𝑜𝑠𝜃𝐿 − 𝑌 𝐿𝑠𝑖𝑛𝜃𝐿 

     =  𝑙𝑦𝜃 𝐿 + 𝑋 𝐹𝑐𝑜𝑠𝜃𝐿 + 𝑌 𝐹𝑠𝑖𝑛𝜃𝐿 − 𝑣𝐿                    (9)  

 

 

where 𝑣𝐿 represents the linear velocity of the leader robot. The new state variable is 

defined to represent the orientation angle difference between the robot leader and the 

follower robot as, 

 

𝑒𝜃 = 𝜃𝐹 − 𝜃𝐿      or  𝜃𝐿 = 𝜃𝐹 − 𝑒𝜃  

 

𝑒 𝜃 = 𝜃 𝐹 − 𝜃 𝐿 = 𝜔𝐹 − 𝜔𝐿     (10) 

 

 

If Equation (10) is substituted to Equation (9) become Equation (11) as follow, 

 

𝑙 𝑥 = 𝑙𝑦𝜃 𝐿 + 𝑋 𝐹 cos( 𝜃𝐹 − 𝑒𝜃) + 𝑌 𝐹  𝑠𝑖𝑛(𝜃𝐹−𝑒𝜃) − 𝑣𝐿  

    =  𝑙𝑦𝜃 𝐿 − 𝑣𝐿 + cos 𝑒𝜃  ( 𝑋 𝐹  𝑐𝑜𝑠 𝜃𝐹 + 𝑌 𝐹  𝑠𝑖𝑛𝜃𝐹) − sin 𝑒𝜃  ( 𝑌 𝐹  𝑐𝑜𝑠 𝜃𝐹𝑋 𝐹  𝑠𝑖𝑛𝜃𝐹 (11) 

 

 

Due to the holonomic constraint of mobile robot in Equation (12), it transforms 

Equation (11) become Equation (13), 

 

𝑌 𝐹𝑐𝑜𝑠𝜃𝐹 − 𝑋 𝐹𝑠𝑖𝑛𝜃𝐹 = 0   (12) 

 

𝑙 𝑥 = 𝑙𝑦𝜔𝐿 + 𝑣𝐹𝑐𝑜𝑠𝑒𝜃 − 𝑣𝐿           (13) 

   

 

where 𝜔𝐿 = 𝜃 𝐿represents the angular velocity of the leader's robot, and 𝑣𝐹  

represents the linear velocity of follower’s robot. In the same way from Equation (8) 

the model of  𝑙 𝑦will be obtained as follow, 

𝑙 𝑦 = 𝑙𝑥𝜔𝐿 + 𝑣𝐹𝑠𝑖𝑛𝑒𝜃      (14) 
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From the overall Equation of the leader-follower kinematic model can be 

summarize in Equation (15) as follow, 

 

 

𝑙 𝑥
𝑙 𝑦
𝑒 𝜃

 =  
𝑐𝑜𝑠𝑒𝜃 

𝑠𝑖𝑛𝑒𝜃

0

    0    

0

1

−1     

0  

0

𝑙𝑦
𝑙𝑥
−1

    (15) 

 

𝑢 =  𝑣𝐹 , 𝜔𝐹 , 𝑣𝐿 , 𝜔𝐿 
𝑇 

 

 

where 𝜔𝐹 is the angular velocity of the follower robot, 𝑣𝐹is the linear velocity of the 

follower robot, 𝜔𝐿 is angular velocity the leader robot and 𝑣𝐿 is the linear velocity 

the leader robot. By using the leader-follower approach, 𝜔𝐿 and 𝑣𝐿 is a time function 

that varies from input control 𝜔 and 𝑣. 

 

2.2. MOTION MODEL  

 

Motion model of mobile robot is used to find the current position of the 

mobile robot. There are two widely used motion model which is velocity and 

odometry. Odometry model as the motion model in the prediction phase of the 

EKF algorithm is utilized in this paper. The motion model of a mobile consists 

of three actions as shown in Figure 1: first rotation, then translation, and the 

second rotation [12] [13] [14]. 

 

 

FIGURE 2. Basic action of mobile robot motion   

 

The motion model uses the relative information of the internal odometer. In the 

time interval  𝑡𝑡−1, 𝑡 , mobile robot will move from initial pose 𝑥𝑡−1 to target pose 

𝑥𝑡  and the report back the related odometry measurement information as 𝑥 𝑡−1 =

 𝑥 𝑦 𝜃  
𝑇
 to 𝑥 𝑡

′ =  𝑥 ′𝑦 ′𝜃 ′ 
𝑇
. The related information will be used to generate 

odometer motion model as follows [14] [15]: 
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𝑥′

𝑦′

𝜃 ′

 =  
𝑥
𝑦
𝜃
 +  

𝛿𝑡𝑟𝑎𝑛𝑠 𝑐𝑜𝑠 𝜃 + 𝛿𝑟𝑜𝑡1 

𝛿𝑡𝑟𝑎𝑛𝑠 𝑠𝑖𝑛 𝜃 + 𝛿𝑟𝑜𝑡 1 
𝜃 + 𝛿𝑟𝑜𝑡

    (16) 

 

 

where, translation 𝛿𝑡𝑟𝑎𝑛𝑠  and rotation 𝛿𝑟𝑜𝑡  is define as following: 

 

𝛿𝑡𝑟𝑎𝑛𝑠 =
𝐷𝑟+𝐷𝑙

2
  and 𝛿𝑟𝑜𝑡 =

𝐷𝑟+𝐷𝑙

2𝑏
       

  

2.3. LANDMARK 

 

Landmark is a feature of the environment that can be detected by the mobile 

robot sensor. Landmark could be an artificial where a landmark is purposely set in 

order to give the benefit to the mobile robot. While a natural landmark is part of the 

environment itself that cannot be manipulated like doors or windows. Based on the 

characteristic, landmark can be divided into active and passive. An active landmark 

actively sent the location information directly to the mobile robot, while the passive 

landmark cannot send the location information. Thus, the mobile robot has to 

actively look for these landmarks is acquired the position measurements [6]. The 

landmark location can be defined as follows; 

 

𝑙𝑘 =  

𝑙 𝑥 ,𝑘

𝑙 𝑦 ,𝑘

𝑙 𝜃 ,𝑘

  and 𝑧𝑘 =  

𝑧 𝑥 ,𝑘

𝑧 𝑦 ,𝑘

𝑧 𝜃 ,𝑘

     (17) 

 

 

where 𝑙 𝑥 ,𝑘  and 𝑙 𝑦 ,𝑘  are the coordinates and 𝑙 𝜃 ,𝑘  is the orientation of the 

landmark in the global coordinate system. The measurement 𝑧𝑘  is assumed to be the 

location of a landmark from the viewpoint of the robot.  

 

 

FIGURE 3. Relation between the robot at location 𝑥, a landmark 𝑙, and a 

measurement 𝑧 
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Given the location of the robot 𝑥𝑘  and the location of the landmark 𝑙𝑘  in global 

coordinates (see. Figure 3). The measurement model is defined ℎ ∙,∙ . That is the 

measurement function that relates the robot’s location with the landmark location.  

 

𝑧𝑘 = ℎ 𝑥𝑘 , 𝑙𝑘 =  

ℎ𝑥 𝑥𝑘 , 𝑙𝑘 

ℎ𝑦 𝑥𝑘 , 𝑙𝑘 

ℎ𝜃 𝑥𝑘 , 𝑙𝑘 

    (18)  

 

 

2.4. EXTENDED KALMAN FILTER 

 

The EKF is an estimator algorithm used when a system is governed by a 

nonlinear function. The EKF processes all available measurements to estimate the 

state and use knowledge of the system and sensor dynamics, the system and 

measurement noises, and any available data about the initial values of the state [15]. 

In a non-linear system, the vector 𝑥 ∈ 𝑅𝑛 is changed to the form used as follows 

𝑥𝑘 = 𝑓 𝑥𝑘−1 + 𝑤𝑘−1, a measurement vector 𝑧 ∈ 𝑅𝑛  𝑧𝑘 = ℎ 𝑥𝑘 + 𝑣𝑘  and a 

perturbation component 𝛥𝑥𝑘−1, 𝑥𝑘 = 𝑥𝑘−1
𝑛𝑜𝑚 + 𝛥𝑥𝑘−1. The EKF estimation algorithm 

for estimating the pose and orientation robot is expressed in Figure 4. The process is 

divided into 2, prediction and correction phase. Such flowchart is utilized for leader 

robot and the follower only follow the leader path. 

The prediction Equation is defined as follows,  

 

𝑃𝑘
− = 𝐸[𝑒𝑘(𝑒𝑘

−)𝑇]  

= 𝐸[(𝐴𝑘𝛥𝑥𝑘−1 + 𝑤𝑘−1)(𝐴𝑘𝛥𝑥𝑘−1 + 𝑤𝑘−1)𝑇]  

= 𝐴𝑘𝐸[𝛥𝑥𝑘−1(𝛥𝑥𝑘−1)𝑇]𝐴𝑘
𝑇 + 𝐸[𝑤𝑘−1𝑤𝑘−1

𝑇 ]  

 𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1𝐴𝑘

𝑇 + 𝑄𝑘−1      (19) 

 

 

and the correction Equation is defined as follows: 

 

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘
𝑇𝐻𝑘

𝑇𝑃𝑘
− − 𝐾𝑘𝐻𝑘𝑃𝑘

− + 𝐾𝑘𝐷𝐾𝑘
𝑇  

𝑃𝑘
+ = 𝑃𝑘

− − 𝐻𝑘
𝑇𝑃𝑘

−𝐷−1𝐻𝑘
𝑇𝑃𝑘

− − 𝐻𝑘
𝑇𝑃𝑘

−𝐷−1𝐻𝑘𝑃𝑘
−  + 𝐻𝑘

𝑇𝑃𝑘
−𝐷−1𝐷𝐻𝑘

𝑇𝑃𝑘
−𝐷−1  

𝑃𝑘
+ = 𝑃𝑘

− − 𝐻𝑘
𝑇𝑃𝑘

−𝐷−1𝐻𝑘𝑃𝑘
−  

𝑃𝑘
+ = 𝑃𝑘

− − 𝐻𝑘
𝑇𝑃𝑘

−(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1𝐻𝑘𝑃𝑘
−  

𝑃𝑘
+ = (1 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−        (20) 

 

 

The Kalman gain is defined, 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1     (21) 

 



Siti Nurmaini, Sahat Pangidoan 
Localization of Leader-Follower Robot Using Extended Kalman Filter 

98                             ISSN: 2252-4274 (Print) 
                                                                                                                ISSN: 2252-5459 (Online) 

 

FIGURE 4. Robot localization with EKF process 

The input parameters are 𝜇𝑘−1 =  𝑥𝑘−1 𝑦𝑘−1 𝜃𝑘−1 ,  𝐾𝑙 , 𝐾𝑟 
𝑇 , 𝑃𝑘−1

+,
 and 

𝑍 =  𝜌 𝜙 , where 𝜇𝑘−1 and 𝑃𝑘−1
+  is respectively the estimated position and the 

position covarian matrix at time 𝑡 − 1.  𝐾𝑙 , 𝐾𝑟 
𝑇  is encoder error, and Z is the actual 

relative measurement. 𝑢𝑘 =  𝐷𝑙 𝐷𝑟 
𝑇  is the control input for left-wheel and right-

wheel. The prediction phase consists of prior estimation 𝜇 𝑘  with covarian matrix 𝑃𝑘
−  

[9]. The EKF localization uses the motion model from Equation (19) with the 

control input from Equation (20) and (21). 𝐴𝑘   and 𝐺𝑘  respectively are the jacobian 

of the estimated pose 𝜇𝑘  at previous pose 𝜇𝑘−1 and control input 𝑢𝑘 .  𝑄𝑘  is 

Covariance matrix of the noise in control. Correction phase consist of posterior 

estimation 𝜇𝑘  with covariance matrix 𝑃𝑘
+, and the kalman gain 𝐾. The estimated 

relative measurement model is 𝑍 , 𝑙𝑥  and 𝑙𝑦  respectively is the landmark pose relative 

to the mobile robot. The jacobian matrix of the predicted measurement model with 

respect to the robot location is 𝐻𝑟 , 𝜇 𝑘 =  𝑥 𝑘 𝑦 𝑘 𝜃 𝑘 . The Covariance matrix of 

the measurement of noise is 𝑅𝑡  . 

 

 

3. RESULTS AND ANALYSIS 
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The EKF algorithm will basically prevent the estimated position from drifting. In 

order to see the effectiveness of the EKF, a simulation made to show how the mobile 

robot move if it depends only to odometer. Meanwhile another simulation was made 

with two kinds of motion models, which is the actual and the estimated model. The 

actual motion model is the motion reference which is represents the real movement 

of the mobile robot in a noisy environment, where the estimated motion model is the 

noise-filtered pose of the mobile robot motion. Finally, the mobile robot is 

programmed to move in a random path in effort to always move close to the actual 

path. 

The experiments are conducted to show how the EKF algorithm fuses the 

odometer information and landmark information to improve the information about 

location with minimized error. Figure 5 (a) and 5(c) shows the pose and orientation 

estimation of the leader follower robot with a fixed value control input motion with 

the initial leader pose is set to  𝑥, 𝑦, 𝜃 𝑇 =  0,0,3.14 . The leader robot only used 

pure odometry estimation produce accumulating errors. The leader pose will drift 

from the actual path as shown in Figure 5 (a). As shown in Figure 5 (b), the green 

line is represented the actual path, and the red line is represented the leader path with 

EKF.  The EKF will keep the pose of the mobile robot close to the actual path, The 

Orientation in the graphs shows the evolution of the mobile robot angles between 

– 𝜋 and 𝜋.  

 

 
(a) Odometry  (pose)    (b) EKF (pose) 

 
(c) Odometry (orientation)  (d) EKF (orientation) 

 

FIGURE 5. Odometry and EKF estimation (blue-line odometry estimation and 

green-line actual path, red-line EKF estimation) 
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In Figure 5 (c) the leader orientation far from actual path if only use the odometry 

estimation, but when it uses EKF to estimation the pose, the leader can keep the 

distance. It produces good estimation to the actual pose. 

The performance of both odometry estimation and EKF estimation can be shown 

in Figure 6 based on the distance error. The error of the odometer (EAO) is a 

difference of actual estimation and odometer, whereas the EKF distance error (EAE) 

is the difference of the actual estimation and EKF estimation as shown in Equation 

(22) and (23). From the EAO which is represented by blue line shows the odometry 

estimation errors that greatly increasing demonstrating a drifting position. However, 

the EKF estimation errors which is represented by red line shows small changing 

compared to the EAO, which indicating a success implementation of the EKF 

algorithm.  

 

𝐸𝐴𝑂 =   𝑥𝛽𝑘
− 𝑥𝛼𝑘

 
2

+  𝑦𝛽𝑘
− 𝑦𝛼𝑘

 
2
  (22) 

 

𝐸𝐴𝐸 =   𝑥𝛽𝑘
− 𝑥 𝑘

+ 
2

+  𝑦𝛽𝑘
− 𝑥 𝑘

+ 
2
   (23) 

 

 

 
FIGURE 6. Distance error 

 

In this paper the landmarks are utilized to improve the motion of mobile robot to 

achieve the target with minimized error. The landmark is an important feature for a 

mobile robot localization to recognize the environment. Moreover, the landmark 

itself can affect the correction capabilities of the mobile robot.  Figure 8 shows the 

robot localization estimation without landmark and Figure 7 represents the EKF 

estimation with landmark activation every 10 iteration. However, the EKF algorithm 

will corporate the actual-noisy path with the landmark to provide a system with 

corrected poses. It can be seen that the EKF estimation correct the pose every time it 

meets the landmark. The distance error of the mobile robot is increase, due to the 

EKF estimation does not have any information to fuse with estimator to improve the 

location itself.  
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(a) Trajectory   (b) Distance error of leader robot 

FIGURE 7. Mobile robot trajectory with landmark 

 

 
(a) Trajectory     (b) Distance error of leader 

FIGURE 8.  Mobile robot trajectory without landmarks 

 

The distance error to ensures the location estimation using landmark is 

successful. The following experiment results in Figure 9 shows a different 

trajectories and distances error according to the different numbers of landmark with 

𝑁 = 2,5,7,10. Assuming the mobile robot moves with a random control input, 

which is also represents the movement with increasing uncertainties, the 

performances of EKF estimation and Odometer estimation after 10 times repetition 

can be shown in Table 1. EOAO and EPAO respectively are position error of EKF 

estimation and pure odometry estimation, while EOAE and EOAO represent 

Orientation error of EKF estimation and pure odometry estimation. According to the 

experimental results, a system with more landmark shows small error on the 

average. The estimation with 10 landmarks detected about 2.1 % error compared 

with just 2 landmark which yield 42.88 % error in pose estimation. Error orientation 

by using 2 landmarks with odometry about 25.52 %, but if EKF is used the error 

decrease to 12.06 %. 
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(a) 2 landmarks                       (b) 5 landmarks  

 
(c) 7 landmarks    (b) 10 landmarks 

FIGURE 9. Distance error of a leader robot with 2, 5, 7, and 10 landmarks 

 

TABLE 1 

Error in pose and orientation estimation   

 
Numbers of 

Landmark  N  
EPAE EPAO EOAE EOAO 

2 0.4288 3.9401 0.2552 2.1700 

5 0.1034 6.1096 0.2502 2.8136 

7 0.0629 5.0902 0.2244 3.4198 

10 0.0294 3.7726 0.1206 2.287 

 

 

4. CONCLUSION 

This study shows the effectiveness of implementation of EKF algorithm to 

improve the localization of the leader-follower robot using the information acquired 

from odometry measurements and landmarks. As shown in the experiment result 

before, an EKF algorithm implemented in a motion model of a leader-follower robot 

will make the mobile robot traverse close to actual path. However, there is a 

problem which cannot solve by the robot itself. Due to the localization, cannot 

accomplished if the landmark is not detected. But if the landmark is added to the 

environment the error is reduced until 40% for pose estimation and 12 % for 

orientation estimation. In the future, the EKF technique will be combine with other 
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localization approach to enhance the performance and the validation of hybrid 

algorithm is conducted with or without landmark information.  
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