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ABSTRACT 
 

A collision avoidance control that tracks a vector potential field-based velocity plan 

of a differential-steered robot is designed. Vector potential function (VPF) is a type 

of potential function used for motion planning. The plan resulted by the VPF is the 

desired velocity vector of the robot on all points in collision-free space. The problem 

to address in this paper is velocity tracking control in the environment of a circular 

obstacle. A controller is designed to track the VPF-based velocity plan. A concept of 

collision cone will be used to evaluate the ability of the controller to avoid collision 

between the robot and the obstacle. The stability of the controller is verified by 

using the Lyapunov stability analysis. Simulations of the controller’s performance 

are presented.  

Keywords: Motion Planning, Vector Potential Field, Velocity Tracking, Collision 

Avoidance 

  

1. INTRODUCTION 

Collision avoidance is a mature issue in robotics research. Particularly, almost all 

research in path and trajectory planning and control involve such the issue. Early 

years of robotics path and trajectory planning research was marked by some 

fundamental results on artificial potential function introduced in [1-2]. The last 

publication became a cornerstone for myriads of results in path planning studies. 

The main principle is straightforward: a collision-free space can be modeled as a 

potential function such that the lowest value of the function will be located at the 

target point. Meanwhile, the points on the space occupied by some obstacles will 

have very high values. Therefore, if a robot is initially located at a collision-free 

point, it will be driven to the target automatically. Some variants on this method 

were introduced, such as the research reported in [3-6]. 

Instead of regarding collision avoidance as global planning problem, some 

studies treated this issue as local planning problem. For instance, the work reported 

in [7]. Here, a technique of vector field histogram (VFH) became one of the best 

methods in collision avoidance studies. The VFH method is based on the 

segmentation of the overall space, such that the edges of the obstacles can be 

detected by evaluating the value of each cell. Other publications were proposed to 

anticipate incidental presence of some obstacles. The proposed methods were 

dynamic window approach [8], and nearness diagram [9]. 

As the research in collision avoidance become mature in the latest decades, 

questions of safety appeared. The addressed issue is described as follows. Suppose 
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that the position and orientation of a robot is in a collision-free space. How can we 

guarantee that the robot is in a safe position? [10]. Such the problem appears by 

considering that in reality, the obstacles may be dynamic. Even though the position 

of the robot is on the collision-free space, however its linear velocity and the 

obstacles’ linear velocities may cause a collision in the near future. The work in [11] 

successfully performed a concept of collision cone to describe the possibility of 

collision. This concept was further developed into the concept of reciprocal 

velocities [12-14]. 

One problem found in reciprocal velocities concept is that there is no specific 

method to determine the maximum allowable linear velocity to lead the robot 

staying outside its velocity obstacle [12], [15-16]. To solve the problem, an 

integration of planning and control phase is proposed. The planning phase is based 

on real-time velocity plan called “vector potential function-based motion plan” is 

proposed in this paper. This method was introduced in [17]. The main principle is 

that a velocity vector field will be generated in the environment of a circular 

obstacle by a vector potential function defined at the obstacle’s center. The 

generated velocity vector field must be tracked by the robot. Therefore, a velocity 

tracking control law is proposed in this paper. A parameter setting is proposed such 

that the resulted velocity satisfies the constraint in the velocity obstacle of the robot.  

The organization of the paper is described as follows. Section 2 presents the 

problem description, starting from the kinematics and dynamics model of 

differential-steered mobile robots and the introduction to collision cone, and finally, 

the objective of this study. Section 3 explains the designed velocity tracking control 

law based on vector potential function (VPF). Section 4 describes the simulation 

results revealing the performance of the proposed control law. Finally, section 5 

provides the conclusion of this study. 

 

 

2. PROBLEM DESCRIPTION 

 

2.1 KINEMATICS AND DYNAMICS MODEL OF DIFFERENTIAL-

STEERED MOBILE ROBOT 

 

Consider a mobile robot, each with a simplified kinematics model adopted from 

[18] given as, 
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where ),,( yx , v  and   represent the configuration (position and orientation) of 

the robot, the nominal linear velocity and the nominal angular velocity of the robot, 

respectively;  Let O  be the center of gravity of the i-th robot; C  be the passive 

wheel assembled at the rear of the robot; b be the distance between C and O ; d  be 

the distance between the right and left wheels.  

The dynamics of the robot is investigated by using Newtonian dynamics. Let us 

define lxF  and rxF  as the left and right longitudinal tire forces resulted from the 
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wheels’ motion, respectively; lyF  and ryF  represent the left and right lateral tire 

forces on the left and right wheels, respectively; xf  and yf  are the longitudinal and 

lateral forces on the castor wheel, respectively. Let m  be the mass of the robot. We 

define l  and r  as the nominal angular velocities of the left and right wheels, 

respectively. 
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FIGURE 1. Kinematics and Dynamics Model of Differential-Steered Mobile Robot.  

 

The relations between l , r , v , and   are described in the following 

equations  below [18], 

 

                                      ))((
2

1
lr   rv                                  (2) 

 

                                                    ))((
1

lr   r
d

                                 (3) 

 

 

By using Newton’s laws, the equation of motions of the robot can be derived as 

follows. The forces applied on the longitudinal, lateral, and the moment applied on 

the center of gravity O  are described as follows; 
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where 
av  and 

a  are the actual values of v  and  , respectively. 

The actuators are two identical DC motors installed on the left and right wheels, 

where each wheel is represented by the following parameters [18]: ak  and bk  the 

torque constant and voltage constant multiplied by the gear ratio; aR is the electric 

resistance constant. The right and the left motors produce torques r  and l , 

respectively, that are formulated as, 

 

                                                     a

a

rbrar Rkk   ,                            (7) 

 

                                                     a

a
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where r  and l  are the input voltages to the right and left motor, respectively. The 

dynamic equations of both of the motors and wheels are expressed as, 
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where wI  and wB  are defined as the moment of inertia and the viscous friction 

coefficient of motor’s rotor-gearbox-wheel combination, respectively. 

Define Pk  and Dk  as the proportional and derivative constants for a PD 

controller of the motor, respectively; the equation of motion of the robot can be 

formulated as the simplification of the model presented in [18] as 
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where  
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2.2 COLLISION CONE 

The term “collision cone” was introduced in Chakravarthy and Ghose (1998). A 

collision cone is a collection of points such that the robot will eventually collide to 

the obstacle. The principle of collision cone is motivated by a fact that to analyze the 

possibility of collision, we could not evaluate only the configuration (position and 

orientation) of the robot. As shown in Fraichard and Asama (2004), the linear 

velocity of the robot must be considered as well.  

 

O
b

r b  Rb
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v
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v b

b
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FIGURE 2. Collision cone.  

 

In this paper, the control system would be designed such that the robot could 

perform collision avoidance motions based on Lemma 2 introduced in Chakravarthy 

and Ghose (1998). To discuss this paradigm, the readers are suggested to see Figure 

2. Define 
b  as the distance between the center of mass of the robot and the center 

of the vehicle; b  as the inclination angle of the vehicle-to-obstacle line with 

respect to global x-axis. 

According to the Lemma 2 in Chakravarthy and Ghose (1998), a robot must be in 

collision in the future if and only if the conditions of 0bb    and 0b   are 

satisfied. It can be inferred from the lemma that the collision might be avoided if and 

only if 0bb    or 0b  . Therefore, it is straightforward that the second 
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condition would guarantee the successfulness of avoiding collision motions. 

However, since the first condition might be occurred for all values of b , then it 

must be evaluated further.  

Define 
br  and 

bR  as the robot’s and obstacle’s radius of prohibited area, 

respectively. As shown in Figure 2, we model a robot as its center of mass and the 

obstacle as a circle with radius 
bb Rr  . It is clear that if 







 


b

bb

arcsin


b
Rr

 and 

0b   then there exist a finite time t where a collision occurs, i.e, the robot enters 

the prohibited area of the obstacle. 

 

2.3 OBJECTIVE OF THE RESEARCH 

The objective of the research can be described as follows. Consider a wheeled 

mobile robot whose kinematics and dynamics model are described in Equation (1) 

and Equations (11) - (15), respectively. Moreover, consider a scenario of the robot 

facing an obstacle while moving towards a specified target, as shown in Figure 2. 

Design a control law such that the robot can perform a collision avoidance motion 

against the circular obstacle. 

 

 

3. COLLISION AVOIDANCE CONTROL LAW DESIGN 

 

In this study, the integration of planning and control is applied. First of all, a 

velocity planning algorithm to avoid collision from Pamosoaji and Hong (2013) is 

used. The planning algorithm uses vector potential function (VPF) and generates 

linear velocity vectors for all points in the environment of the obstacle. The 

performed plan then is tracked by applying a velocity tracking control law (see sub-

section 3.2). 

 

3.1 VECTOR POTENTIAL FUNCTION (VPF) 

 

Vector potential function (VPF) is function used to generate velocity plan in a 

free-collision space. This function is inspired from the Basic Physics course, i.e., 

Biot-Savart law on electric current flowing through a cable with infinite length 

(Pamosoaji and Hong, 2013). For the context of collision avoidance over a circular 

obstacle, velocity plan can be generated by applying curl operator to the following 

function, 

 

                     
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L
dzz kψ

2/122 ,                                  (16) 

 

 

where   is the VPF applied on the center of the obstacle,   is a positive constant; 

  is the distance between the center of robot, i.e., O, and the center of the obstacle, 

and z denotes the length of the “cable” passing through the obstacle orthogonally. 

Therefore, the generated velocity plan, denoted as U  is formulated as, 
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As shown in Pamosoaji and Hong (2013), the resulted U  is a velocity vector 

field with tangent direction to the line connecting the occupied point to the center of 

the obstacle.      

 

3.2 CONTROL LAW DESIGN 

 

In this paper, a control law is designed such that the error v~  between the resulted 

plan in Equation (17), i.e., 
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equals to zero. From Equation (17) it can be concluded that 
b
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U . Consider the 

following kinematic model, 
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Proposition 1:  The following control law: 
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makes the origin of Equation (19)-(20) globally asymptotically stable if and only if 

0cos b b . 

Proof: Define a Lyapunov candidate function 
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Applying the control law in Equations (21) - (22) to (25) yields the following 

expression for b
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Substitution of c   in Equation (23) to (26) yields, 
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Therefore, the origin of Equation (19) - (20) is asymptotically stable if and only if. 

To anticipate the robot to enter an intersection area of more than one obstacle, the 

velocity plan then is generated by using the VPF from the closest obstacle.  

 

 

4. SIMULATION RESULTS 
 

A simulation was performed to evaluate the performance of the proposed 

collision avoidance control design. Here, three mobile robots were involved. The 

configurations of robots I, II, and III were )rad,m10,m20(  , 

)rad6/,m10,m20(  , and )rad2/,m20,m0(  , respectively. 
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FIGURE 3. Target tracking with the existence of a circular obstacle.  

 

The scenario is described as follows. Each robot was assigned to follow an 

associated moving reference. The configurations of the references of robots I, II, and 

III were )rad0,m40,m20( , )rad0,m40,m20(  , and )rad2/,m40,m60(  , 

respectively. The scenario was designed such that the references only moved 

forward with linear velocities set to 1 m/s and without any turning maneuver. Here, 

the length of bb

kk Rr   was set as 10 meters. The controller’s constant was set as 

1ck 00, 1sec5 k . The dynamics parameters of the robots are described in 

Table 1. Here, the actuators were assumed to be controlled by using a PD-controller. 

The scenario of the mission is illustrated in Figure 3. 

For target tracking mission, a set of navigation variables was used, i.e.,  , f , 

and a , where the definitions are explained in Equation (28): 
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                                                           xxx  r
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                                                           yyy  r
.                                      (30) 

 

 

The tracking control law used is expressed as follows, 

 

                                                          a cosvkv  ,                                    (31) 
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FIGURE 4. Trajectories performed by 3 vehicles to avoid inter-robot collision. 

 
FIGURE 5. Reference tracking results of the three robots. The red-and-solid curves 

represent the actual values of the robot’s coordinate and the blue-and-dotted curves 

represent the reference of the associated robots. 
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FIGURE 6. The distance between any pair of robots. 

 

 

TABLE 1.  

Dynamics parameters used in simulation 

 

Parameters Value 

Pk  7 

Dk  1 

r  0.2 m 

wI  0.1 Nm 

ziI ,  0.1 Nm 

d  0.9 m 

b  0.10 m  

m  10 kg 

aR  1 ohm 

wB  0.1 Nm.sec/rad 

ak  10  

bk  1 

 

 

where vk  and k  are positive constants. Note that the control law (31) and (32) is 

not discussed in this paper. 
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The simulation was designed under a task of reference tracking, i.e., the collision 

avoidance motion was actually a part of the tracking task. However, in this paper, 

the reference tracking is not discussed. The proposed collision avoidance motion can 

be assembled to any moving reference tracking control law. 

As shown in Figure 4, the initial configurations of the robots were designed such 

that there was high possibility to get closer to another robot before reaching their 

associated references. It could be shown that all the robots were successfully 

avoided any collision to the others. Figure 5 reveals the performance of reference 

tracking of each robot. From Figure 5, it can be concluded that the process of target 

tracking is fully disturbed when the robot’s position is in the environment of the 

obstacle (or, other robots). After the robot exits the environment of the Figure 6 

shows that the distances of any pair of robots can exceed the predefined bb

kk Rr  . 

For the pairs of robots 1 and 2, 1 and 3, and 2 and 3, we can obtain the closest inter-

robot distances were 31.95 meters, 11,76 meters, and 15,19 meters.  

 

 

5. CONCLUSION 

 

A vector potential function (VPF)-based collision avoidance control algorithm is 

proposed. The main feature of the control algorithm is that it tracks the linear 

velocity plan generated by applying VPF in the environment of obstacles. In 

addition, collision cone principle is considered to examine the safety of the robots. A 

simulation showing the application of the proposed algorithm on a multiple robot 

system is presented. It can be proofed that the proposed algorithm. 
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