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ABSTRACT 

Malware is very dangerous while attacked a device system. The device that can be 

attacked by malware is a Mobile Phone such an Android. Antivirus in the Android 

device is able to detect malware that has existed but antivirus has not been able to 

classify new malware that attacks an Android device. In this issue, malware 

classification techniques are needed that can grouping the files between malware or 

non-malware (benign) to improve the security system of Android devices. Deep 

Learning is the proposed method for solving problems in malware classification 

techniques. Deep Learning algorithm such as Deep Neural Network has succeeded 

in resolving the malware problem by producing an accuracy rate of 99.42%, 

precision level 99% and recall 99.4%. 
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1. INTRODUCTION 

 

Malware is one of the most dangerous types of attacks for mobile phone, 

especially Android [1]. Malware infiltrated various applications in the Android 

application and encrypted someone's data to damage the entire mobile phone system 

[2]. Many types of malware are often used by someone to damage Android security 

systems such as Droidkungfu, Trojan, Ransomware, and others [3]. With various 

malware attacks in the mobile phone, a method that can solve malware problems is 

proposed with the Deep Neural Network and Convolutional Neural Network 

algorithms [4].   

The malware detection technique uses Convolutional Neural Network algorithms 

generally used for malware extracted into the form of images or data that are 

visualized first [5]. To implement an algorithm in malware classification it is 

necessary to first look at the dataset obtained because the contents of the dataset 

determine which algorithm is suitable for implementation [6]. For the Deep Neural 

Network algorithm carried out by [6], the accuracy rate is higher at 93.67% with 

balanced data. In the result get high accuracy results obtained using the Deep Neural 

Network algorithm, it means that the Deep Neural Network algorithm is very 

suitable to be implemented in terms of malware classification techniques because it 

has good accuracy when implemented [6]. In part 1 this paper discusses the 

introduction of the contents of the paper. Part 2 discusses the dataset and the 

proposed method. Section 3 discusses preprocessing data and drawing DNN models. 

Section 4 discusses evaluating the performance of the ROC curve and a confusion 

matrix. The last section discusses the overall conclusion. 
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2. DEEP NEURAL NETWORK 

 

Deep Neural Network (DNN) is a neural network-based algorithm that can be 

used for decision making that has more than one hidden nerve layer. This algorithm 

is the development of intelligence namely ANN algorithm (Artificial Neural 

Network) [6]. To get high level in accuracy of this algorithm, data needs to be 

trained first [8]. DNN consists of several layers and neurons in each layer. Both of 

these cannot be determined using definite rules and apply differently to different 

data [9]. In the development of Deep Learning, it was found that to overcome 

backpropagation shortcomings in handling complex data, a function is needed to 

transform input data into a form that is easier for backpropagation to understand. 

This triggers the development of Deep Learning wherein one model are given 

several layers to transform data before the data is processed using the classification 

method. This triggers the development of the neural network model with a number 

of layers above three. But due to the initial layer function as a feature extraction 

method, the number of layers in a DNN does not have universal rules and applies 

differently depending on the dataset used [10]. Here's the backpropagation theorem. 

 

𝑦(𝑣𝑖) = tanh(𝑣𝑖)             (1)

  

Here  yi is the output of the i (neuron) and vi is the weight sum of the input 

connections 

𝑦(𝑣𝑖) = (1 + 𝑒−𝑣𝑖)             (2) 

 

The nodes we have are based on corrections that reduce errors in the entire output, 

given by, 

𝜀(𝑛) =  
1

2
 ∑ 𝑒2(𝑛)               (3) 

 

The change in each weight is, 

∆𝑤𝑗𝑖(𝑛) =  −𝜇
𝜕𝜀(𝑛)

𝜕𝑣𝑗(𝑛)
 𝑦𝑖(𝑛)              (4) 

 

The derivative to be calculated depends on the induced local field vj. The output of 

this derivative node can be simplified to, 
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− 
𝜕𝜀(𝑛)

𝜕𝑣𝑗(𝑛)
= 𝑒𝑗(𝑛)∅(𝑣𝑗(𝑛))             (5)

  

This depends on the change in weights of the k nodes which represents the output 

layer: 

−
𝜕𝜀(𝑛)

𝜕𝑣𝑗(𝑛)
=  ∅(𝑣𝑗(𝑛)) ∑ −

𝜕𝜀(𝑛)

𝜕𝑣𝑘(𝑛)
𝑤𝑘𝑗(𝑛)𝑘           (6) 

 

DNN have three part of layer such an input, hidden and output layer. These 

cannot be determined using definite rules and apply differently to different data. The 

feedforward process works by multiplying the neurons so that many networks are 

formed which add to the variant of data to be studied. The results of the feedforward 

process are weights that will be used to evaluate the process of neural networks. 

While the testing process is a classification process using weights and biases from 

the results of the training process. So the result of this process is the accuracy of the 

classification performed. With weight and bias, a new feedforward process is 

applied to produce an output layer for inputting. 

 

 

3. MATERIAL AND METHOD 

 

3.1  DATASET 

The dataset is obtained from the malgenome dataset project [7]. The malware and 

benign files obtained amount to 7414 data with the number of malware files 3707 

and benign files 3707 [7]. Then the dataset is labeled X and Y. The data is then 

processed by preprocessing first. Then it will enter the DNN classification process. 

Can be seen in Table 1. 

 

TABLE 1. 

Dataset Description 

 
 

 

3.2 DATA PREPROCESSING 

 

The dataset was used in this malware detection technique is 7414 files. Because 

the dataset is imbalanced, it is necessary to do a dataset resampling technique using 

 Transact bindService onServiceConnected Service Connection Read_sms 

Count 3799.0 3799.0 3799.0 3799.0 3799.0 

Mean 0.45224 0.467228 0.470387 0.500921 0.256383 

Std 0.4977 0.4989 0.4991 0.4991 0.500065 

Min 0 0 0 0 0 

25% 0 0 0 0 0 

50% 0 0 0 0 0 

75% 1 1 1 1 1 

max 1 1 1 1 1 
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SMOTE [8]. Data imbalance occurs when the number of objects in a data class is 

more than the other classes. Data classes with more objects are called major classes 

while others are called minor classes. The effect of unbalanced data usage to make a 

very large model on the results of the model obtained. Processing algorithms that 

ignore data imbalances will tend to be covered by major classes and ignoring minor 

classes [8].  

The SMOTE method is proposed as one of the solutions to handling unbalanced 

data with different principles with the oversampling method that has been proposed 

previously. If the oversampling method is based on multiplying random 

observations, the SMOTE Method increases the number of minor class data to be 

equivalent to the major class by generating artificial data [8]. Artificial data 

generation on a numerical scale differs from categorical.  

Numerical data is measured by the proximity to Euclidean distance, while 

categorical data is simpler, namely the mode value. The distance calculation 

between examples of minor classes whose variables are categorical in scale is done 

by the formula Value Difference Metric (VDM) in Equation 7 and 8. 

 

 

∆(𝑋, 𝑌) = (𝑊𝑥𝑊𝑦 ∑ 𝛿(𝑥𝑖, 𝑦𝑖)𝑟)𝑛
𝑖=1                                   (7) 

 

 

                      𝛿(𝑉1, 𝑉2) = ∑ ǀ
𝐶1𝑖

𝐶1
−

𝐶2𝑖

𝐶2
ǀ𝑘𝑛

𝑖=1                        (8) 

 

 

 

Using the SMOTE approach, the amount of data is added to become 7414 data. 

The addition of the above data is useful for changing data that is initially imbalanced 

to be balanced. 
 

 

3.3 DEEP NEURAL NETWORK ARCHITECTURE 
 

The implementation of DNN hidden layer is recommended above 3 layers 

because to increase the value of accuracy in training and testing. In terms of the 

classification of malware, the following DNN network architecture is proposed as 

shown in Figure 1. 
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FIGURE 1.  DNN network architecture 

 

 

Figure 1 shows a series of DNN network architecture consisting of input layers, 

hidden layers, and output layers. There are 214 features with 75 epochs. At the input 

layer, there are 214 input. In the first hidden layer until last hidden layer, there are 

150 nodes with ReLu activation function. In output layer use the sigmoid activation 

function. The difference in this activation function is due to the different roles of 

each unit. It has a role in accelerating the convergence process. Relu only creates a 

threshold for zero numbers.  

Sigmoid in the output layer because it converts the value to non-linear and has a 

value of 0 and 1 and in this study applying binary crossentropy , the final result is 0 

and 1 which means the sigmoid function must be placed at the output layer. To start 

the classification process, it is preceded by a data training process. 

 

1. Create input layer (xi), hidden layer (z_inj), wight (vij) 

z_inj = xi ∗ vij    

z_inj = z_inj + vij 

zj = f(z_inj)                (9) 

 

2. Create output in (y_ink), output value in hidden layer(zj), weight (wjk) 

y_ink= zj* wjk    

y_ink= y_ink + wjk 
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yk= f(y_ink)             (10) 

 

3. Determine error in the output layer by using relu used cross-entropy method 

    

          𝐿𝑜𝑠𝑠 =  − (
1

𝑛
) (𝑜𝑢𝑡𝑝𝑢𝑡 𝑥 log 𝑦𝑖) +  (1 − 𝑜𝑢𝑡𝑝𝑢𝑡) 𝑥 log(1 − 𝑦𝑖)                (11) 

 

4. Calculate the loss function to find the gradient by partial derivative of the 

sigmoid by use chain rule 

f ′(sigmoid) =  
1

1 +  e−x
 

f ′(sigmoid) = yi ∗ (1– yi)  

f ′(sigmoid) = – yi ∗ yj 

δk = (tk − yk)f′(y_ink)             (12) 

 

5. Update all weight 

∆wjk =  αδk zj              (13) 

 

6. Error calculation in each weight 

δinj =  ∑ δk wjk m
k=1              (14) 

δj =  δinj f
′(zinj)              (15) 

 

7. Update the bias  

∆vij = (αδj xi)             (16) 

 

8. Update all parameters (weight and bias) 

 

wjk(new) = wjk(old) +  ∆wjk           (17) 

vij(new) = vij(old) +  ∆vij             (18) 
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The training process is a stage where the DNN is trained to obtain high accuracy 

from the classification carried out. This stage takes 70% of the sample dataset with 

split validation 0.33 and 75 epochs. This stage consists of feedforward and 

backpropagation processes. The feedforward process works by multiplying its 

neurons so that many networks are formed which add variants of data to be studied. 

The results of the feedforward process are weights and loss function. Loss function 

is used to backward process to get gradient. Gradient is used to minimize error in 

backpropagation process. While testing is the classification process using weights 

and biases from the results of the training process. In the testing stage, the process is 

to test all the training data. So the final result of this process is accuracy in training 

data, accuracy in testing data, and all the parameter performance. With the weights 

and biases, the forward process is applied which then produces the output layer. The 

output is fully connected layer to get the error loss function. The stage of the 

proposed algorithm as shown in Figure 2.  

 
 

 

FIGURE 2.  The stage of classification process 

 

3.4 PERFORMANCE OF MALWARE CLASSIFICATION ALGORITHM 

At this stage, all data from the experiment will be validated. Validation aims to 

determine whether the simulation of the benign ransomware classification system is 

in accordance with the predictions that have been made. This validation process will 

be carried out using a confusion matrix. This matrix describes the classification 

performance of experimental data that contains data prediction information. 

In measuring performance using confusion matrix, there are four terms of 

representation of the results of the classification process, namely True Positive (TP), 

True Negative (TN), False Positive (FP) and False Negative (FN) in Table 2. 
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TABLE 2. 

Confusion Matrix 

 
Confusion Matrix 

True Positive (TP) Positive data detected correctly 

False Negative (FN) Negative data detected positive data 

False Positive (FP) Negative data detected correctly 

True Negative (TN) Positive data but detected negative data 

   

 

 

Based on the Table 1 describe the confusion matrix of data. True positive indicate 

that normal file but detected as a malware. False negative indicate the malware but 

detected in normal file. False positive indicate that malware detected correctly. And 

the last is true negative is normal file but detected malware. 

Accuracy score is describe the system can classify data correctly or not. Accuracy 

is comparison of true positive and true negative with overall data such true positive, 

true negative, false positive and false negative. The formula of accuracy is in the 

Equation 19. 

 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                 (19) 

 
 

The precision score represents the number of correctly classified positive 

categorized data divided by the overall data classified as positive. What we want is 

high precision and recall, but this is very rare. By testing a series of models and 

plotting their precision and recall, their curves will give you an idea of the ideal 

tradeoff you need to go to. 

To find out whether the proposed algorithm is biased towards a positive if we 

have very low precision, but very high recall. Precision can be obtained by Equation 

20. 

 

                              Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      (20) 

 

 

The score of recall indicate the percentage of positive category data correctly 

classified by the system. Recall can be obtained with the Equation 21. 

 

           Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (21) 

 

Meanwhile, specificity formula is comparison of true negative with true positive 

and false positive. Specificity formula in Equation 22.  
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Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
            (22) 

 

 

4. EXPERIMENTATION AND RESULTS   

 

The results in the classification of malware and benign files obtained using the 

Deep Neural Network algorithm produces a very high level of accuracy with an 

accuracy of 99.42%. The following graph shows the accuracy of training and testing 

as shown in the following Figure 3. 

 

 

 FIGURE 3. Training and Testing Accuracy Curves 

 

Based on the Figure 3 in accuracy of the classification system. In training process 

get 0.991 until 0.999 in accuracy plot. But in testing process get the 0.960 until 

0.990 in accuracy plot. The plot of the accuracy and loss charts show good results. 

The best score in the plot analysis is if the training process and testing process result 

the convergen graph.  

Convergen is very need to be in graphic result. It seems the result is good or not. 

accuracy model and loss model obtained from the training and testing process The 

training process uses the relu activation function in the hidden layer and the sigmoid 

activation function in the output layer. The loss function used is binary crossentropy 

and uses Adam optimizer. The plot of the accuracy and loss charts show good 

results. the plot of loss function as shown in Figure 4. 
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FIGURE 4. Loss Curve 

 

Based on the Figure 4 show that loss in training process in 0.010 until 0.025. in 

testing process loss stay in 0.075 until 0.2. it show that the process is still good in 

classification. But it seems that the value is poor in amalysis. The value of the 

resulting ROC curve is equal to 97% as shown in Figure 5. 

 

 

FIGURE 5. ROC Curve 
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Confusion matrix value is comparison of predict label and actual from confusion 

matrix. The results of the confusion matrix calculation based on trials in the Jupiter 

notebook show good results, as shown in Table 3. 

 

 

TABLE 3. 

Confusion Matrix Value 

 
Confusion Matrix Value 

True Positive (TP)  

Reality                      : Malware 

Predicted                   : Malware 

Number of TP result : 1113 

 

False Positive (FP) 

Reality                       : Benign 

Predicted                   : Malware 

Number of TP result : 14 

 

False Negative (FN) 

Reality                      : Malware 

Predicted                   : Benign 

Number of TP result : 0 

 

True Negative (TN) 

Reality                      : Benign 

Predicted                   : Benign  

Number of TP result : 1098 

 

   

 

 

 

Based on the Table 3 shows that obtained True positive is 1113, True Negative is 

1098, False positive is 14 and False Negative 0. The next step is calculate the 

precision and recall. The value of the Precision and Recall results are very good. As 

shown in Table 4. 

 

TABLE 4. 

Precision and Recall Value 

 
Precision and Recall 

Precision  99.6% 

Recall 99.4% 

   

 

The precision value obtained is 99.6% while for the recall value is 99.4%. To get 

a curve of precision and a good recall is to calculate from the formula precision and 

recall. A confusion matrix for two classes is used binary crossentropy is shown four 

analysis. The first is true positive value is normal file with correctly classification. 

False positive value is from malware file detected correct. True negative is malware 

file detected correctly in classification and False negative is malware data detected 

normal file and normal file detected malware. To see the precision and recall curves 

can be seen in Figure 6 with average precision 0.60 
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FIGURE 6. Precision and Recall Curve 

 

The development of the DNN model that is implemented is very capable of 

detecting malware. The DNN model produces the best performance. But the data 

processed in this case includes imbalanced data and preprocessing stage needs to be 

done before the training, testing and data classification stages are carried out. This is 

obtained from the results of the accuracy and confusion matrix that initially 

overfitting, then by using SMOTE the data increases. The value of the accuracy and 

confusion matrix results are very good. As shown in Table 5 below. 

 

 

TABLE 5. 

    Evaluation of Results 

Hidden Layer Accuracy Precision Recall 

    

2 Layer 96.1% 97.2% 98.7% 

3 Layer 94.3% 97.8% 95.9% 

4 Layer 95% 96% 96.1% 

5 Layer 94.9% 96.7% 97.2% 

6 Layer 99.4% 99.6% 99.4% 

     

 

 

 

From the results of experiments with several hidden layers can be seen that the 

more hidden layers, the better the level of accuracy, precision, and recall. This 

proves that the classification results successfully group files between malware and 

benign. The dataset is imbalanced. The results of 99% precision and 99.4% recall. 
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To see the evaluation result curves of accuracy, precision, and recall can be seen in 

Figure 7. 

 

 
 

FIGURE 7. Evaluation Result Graph 

 

5. CONCLUSION 

 

Preprocessing using SMOTE for imbalanced data and the DNN classification 

method is very reliable for determining the correctness and classification of malware 

and benign. This is proven by the accuracy of 99.4%. Changes in layer level greatly 

affect the level of accuracy when training data, and therefore must be careful in 

changing the layer level. By using good and optimal training data, a subset of the 

training data will also produce a good classification. However, because data is 

imbalanced, the results of precision and recall are the most important in terms of 

performance with a value of 99% precision and 99.4% recall. 
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