
 

 

Computer Engineering and Applications Vol. 8, No. 3, October 2019 

 

ISSN: 2252-4274 (Print)         159 

ISSN: 2252-5459 (Online) 

Optimal Control of Jebba Hydropower Operating Head by a 

Dynamic Programming 

Olalekan Ogunbiyi1*, Cornelius T. Thomas2, Isaac O. A. Omeiza3, Jimoh Akanni4, B. J. 

Olufeagba5 

1Electrical and Computer Engineering Department, Kwara State University, Malete, Nigeria 
2Electrical and Information Engineering Department, Achievers University, Owo, Nigeria 

3,4,5Electrical and Electronics Engineering Department, University of Ilorin, Nigeria 

*biyikan@gmail.com    

 

ABSTRACT 

Nigeria with a generating potential of roughly 12,522 MW only supplies less than 

20% of the national demand. This necessitates an optimal use of the Jebba 

Hydroelectric Power Plant whose optimal generation depends on the operating head. 

This paper presents the solution to an optimal control problem involving the 

operating head of the plant. An optimal control problem consisting of a model of the 

system dynamics, performance index and system constraints was solved using a 

dynamic programming approach. The control procedure was built on the integration 

of the nonlinear dynamical model by an Adams-Moulton technique with Adams-

Bashfort as predator and Runge-Kutta as a starter. The numerical solution, coupled 

with dynamic programming was employed in developing an optimal control 

procedure for the regulation of the operating head. Result presented shows the 

potential of the control procedure in determining the amount of inflow required to 

restore the operating head to a nominal level whenever there is a disturbance. 

Keywords: Dynamic programming, Hydropower, Inflow, Operating head, Optimal 

Control. 

 

1. INTRODUCTION 

 

Electricity generation in Nigeria has been lower than required and the supply is 

epileptic. Although the nation is powered from roughly 29 generating stations but 

the power available on the grid is every non-sufficient. As at 30th of January 2019, 

the peak generation was 4,328.40 MW as against the installed capacity of 12,910 

MW. Both the generation and installed capacity are lower to the estimated national 

peak demand forecast of 23,020 MW, hence the generation capacity of each station 

should be optimized continually to supply the population estimated at 185,989,640. 

Jebba Hydroelectric powers station JHEPS is one of the reliable generating 

facilities of the nation, it contributes appreciably percentage of the installed 

generating capacity.  It is located on the River Niger at latitude 09^0 08^' 08^'' N 

and longitude 04^0 47^' 16^'' E with an installed capacity of 578.4 MW form six 

units of 96.4 MW turbo-alternator [1]. JHEPS play an important role in both 

supplying and stabilizing the national grid. It has high reliability as compared to the 

thermal stations and the cost of generating energy is cheaper as well. 

In Sambo et al. [2], a major factor affecting power generation in the country is a 
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poor utilization of the existing resources. Therefore, it is imperative to explore and 

design efficient means of obtaining a reliable and optimal power from the JHEPS. 

The JHEPS Reservoir depends on discharge and spill from the Kainji Hydroelectric 

Power Station (KHEPS). This necessitates a formal resources management and 

control procedure such that the units at JHEPS can operate throughout the year. 

Unfortunately, operators are faced with challenges involving the operational safety 

of the stations and the power demand requirements from the grid [3], [4] 

KHEPS and JHEPS operate in cascade but there is no control system to regulate 

their operation. The reservoir head is being managed by observation of inflows and 

experience[5]. From the daily operational report form the TCN NCC, it is obvious 

that the potential of JHEPS has not been maximised. There are occasions where 

some units at JHEPS are shut down if the release from KHEPS is low. There has 

been research on the forecast and management of inflow such as to ensure optimal 

power generation [6]. Meanwhile, the regulation of the reservoir head does not 

depend on the inflow alone but also the unit’s availability and environmental factors 

that are weather-related. The optimal determination of the amount of release 

required from KHEPS for the regulation of JHEPS remains a potential problem 

unsolved. 

From literature, the have been numerous work on optimization of water resources 

for optimum system performance and economic benefit [7]. In most cases, the 

solution to the optimization problem is difficult because of the large set of variables 

involved and nonlinearity of system dynamics.  As a result, there exist several 

mathematical programming techniques but most only solves a particular class of 

problem. A method of handling a general form of reservoir optimization problem 

does not exist [7][8]. A given type of optimization problem may, therefore, require 

an optimization technique.   

In this work, the optimal regulation of JHEPS reservoir head is posed as an 

optimal control problem. The system dynamical model was presented in [9] to 

satisfy a nonlinear differential equation. The performance index is the minimization 

of deviation of the head from the nominal value while the constraints include the 

system dynamical model. Since the model, the performance index and the associated 

constraints are nonlinear, hence the solutions to such optimal control problem 

become more challenging. 

Optimal Control is the determination of the control signal and the state trajectories 

for a dynamical system, within an interval of time, in order to minimise a given 

performance index [10].  Unfortunately, many problems that are rooted in nonlinear 

optimal control theory do not have computable solutions or they have solutions that 

may be obtained only with a great deal of computing effort [11].  

Standard theories of optimal control are presented in [12-14]. Solutions to optimal 

control problems are broadly categorized into two: the direct and indirect methods. 

In the direct methods, the optimal solution is obtained by direct minimization of the 

performance index subject to constraints. The indirect method applies calculus of 

variation to set up necessary conditions that must be satisfied by the optimal control. 

Calculus of the, together with Pontryagin’s minimum principles are used to setup 

optimality conditions. These conditions produce optimal control canonical equations 

such that their solution ensures that an optimum point has been reached.  While 

using this approach, it is usually necessary to calculate the Hamiltonian, co-state 
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equations, the optimality and transversely conditions (Rodrigues et al., 2014). The 

difficulty in solving optimal control problem by indirect methods is that it is 

necessary to calculate the Hamiltonian, adjoint equations, the optimality and 

transversely conditions. The approach is also not flexible, a new derivation is 

required whenever a new problem is formulated [10]. 

Hydropower system has large numbers of nonlinearities and stochastic variables, 

hence they are usually optimized by dynamic programming. The solution to an 

optimal control problem using dynamic programming is based on the Bellman 

Principle of Optimality. The principle of optimality states that an optimal policy has 

the property that whatever the initial state and initial decision are, the remaining 

decisions must constitute an optimal policy with regard to the state resulting from 

the first decision [13][15][16].  

Dynamic programming is a multi-stage procedure that determines the best 

combination of decision variables that optimize a certain performance index. It has a 

potential of optimizing convex and non-convex, linear and nonlinear, continuous 

and discrete and a constrained and unconstrained system. These are what makes it 

superior to other technique [8].  

In Sundström et al. [17], optimal control involving hybrid electric vehicle energy 

management was solved using dynamic programming. Similarly, an algorithm 

motivated by dynamic programming solved the determination of an optimum 

continuous input and optimal switch sequence for a two-stage optimization problem 

involving a switch system [18]. It was also used in [19][20] to solve optimal control 

problem relating to energy management of plug-in hybrid electric vehicles and 

management of a cascaded hydropower system. Therefore, this work employed 

dynamic programming to solve an optimal control problem involving the regulation 

of the operating head of JHEPS. 

 

 

2. PROBLEM FORMULATION 

 

Solution to an optimal control problem involves the determination of the control 

signal required to move a system state from an initial point to a desired time in finite 

time another Optimal control is purely an optimal control problem whereby a control 

signal is desired that will force the reservoir head at JHEPS to move from an initial 

point to the desired point in finite time and subject to constraints imposed by the 

system dynamics.  

 

2.1 JHEPS DYNAMICAL MODEL 

 

Figure 1 the schematic diagram of the JHEPS where ℎ is the reservoir operating 

head (𝑚),  𝑄 is the inflow into the reservoir (𝑚3/𝑠), 𝑄𝐿 is the losses on the 

reservoir that is majorly due to evaporation (𝑚3/𝑠), 𝑄𝑠 represent the flow through 

spillway (𝑚3/𝑠), 𝑞 is the inflow along the penstock (𝑚3/𝑠), 𝐴1 is the effective 

surface area of the reservoir (𝑚2) while  𝐴2is the area of the inlet into the scroll 

casing (𝑚2). 𝑞𝑘  and 𝑄𝑠𝑘 are the discharge and spill from KHEPS respectively, 

while 𝑄𝐶𝐽 is the inflow within the catchment area between Kainji and Jebba 
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hydropower stations. 

The total power generated from the station can be expressed as Equation 1 [9], 

where 𝑃 is the power generated by the station, 𝑛 is the number of units in operation 

(𝑛 can take an integer value from 1 to 6), 𝜂 represents the conversion efficiency of 

the turbo-alternator and  𝑔 is the acceleration due to gravity. 

 

𝑷 = √2  𝑛𝜂𝜌𝐴2𝑔
3

2⁄ ℎ
3

2⁄  (W)              (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Schematic Diagram of JHEPS 

 

Equation 1 shows that the power dynamics is a function of the operating head 

dynamics, of which the dynamical model equation can be represented by Equation 2.  

 
𝑑ℎ(𝑡)

𝑑𝑡
= − 𝑛 ∝ ℎ

1
2⁄ (𝑡) +  𝜇𝑢(𝑡)                  (2)  

  

𝛼 = 𝐴1
−1𝐴2√2𝑔  ; 

𝜇 = 𝐴1
−1

 

𝑢(𝑡) = 𝑞𝑘(𝑡) + 𝑄𝑠𝑘(𝑡) + 𝑄𝐶𝐽(𝑡) − 𝑄𝐿(𝑡) − 𝑄𝑠(𝑡)   

               (3) 

Equation 2 is presented in a standard form as 
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                           ℎ̇(𝑡) = 𝑓(ℎ(𝑡), 𝑢(𝑡); 𝑡)                                  (4) 

 

     ℎ(𝑡0) = ℎ0 

 

         𝑡 ∈ [𝑡0, 𝑡𝑓] 

 

2.2 THE SOLUTION OF THE NONLINEAR MODEL 

The essence of the model equation is for it to be used in control system design, 

hence the solution is desired. It is evident that the dynamical model satisfies a 

nonlinear differential equation from which the closed-form solution is not readily 

available, hence a numerical solution has to be employed. 

The numerical solutions employed is the Adams Moulton numerical techniques 

with Adams Bashfort as predictor and Runge Kutta starter. The procedure is as 

follows: 

Given that ℎ(𝑛−4) = ℎ0 and 𝑢(𝑡) is also specified.  

By Adams – Moulton numerical technique, ℎ𝑛 can be expressed as equation (). 

The predictor ℎ�̃� is computed by Adams – Bashforth technique of equation (). Since 

Adams-Moulton technique is not self-starting, the intimidate head (ℎ(𝑛−3), ℎ(𝑛−2), 

ℎ(𝑛−1)) were computed using the Runge - Kutta technique of equation (5): 

 

ℎ𝑛 = ℎ(𝑛−1) +  
∆𝑡

24
(9𝑓(ℎ̃𝑛) + 19𝑓(ℎ(𝑛−1)) − 5𝑓(ℎ(𝑛−2)) + 9𝑓(ℎ(𝑛−3))         

                                                     (5) 

 

ℎ�̃� = ℎ(𝑛−1) +  
∆𝑡

24
(55𝑓(ℎ(𝑛−1)) − 59𝑓(ℎ(𝑛−2)) + 37𝑓(ℎ(𝑛−3)) − 9𝑓(ℎ(𝑛−4))      

                                                                                                                                (6) 

ℎ(𝑛−3) = ℎ(𝑛−4) +  
1

6
(𝑘1 + 2𝑘2+ 2𝑘3+𝑘4)               

                                                                       (7) 

where, 

𝑘1 = ∆𝑡 ∗ 𝑓(𝑡𝑛, ℎ(𝑛−4))   

                          (8) 

    𝑘2 = ∆𝑡 ∗ [𝑓(𝑡𝑛, ℎ(𝑛−4))+ 0.5𝑘1]   

                                     (9) 

    𝑘3 = ∆𝑡 ∗ [𝑓(𝑡𝑛, ℎ(𝑛−4)) + 0.5𝑘2]   

                                                (10) 

     𝑘4 = ∆𝑡 ∗ [𝑓(𝑡𝑛, ℎ(𝑛−4)) + 𝑘3]   

              (11) 
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3. OPTIMAL CONTROL PROBLEM 

The optimal control problem solved in this work is the determination of the 

control vector 𝑢(𝑡) 𝜖 𝑈(𝑡), which compels the dynamical system �̇�(𝑡) =
𝑓(ℎ(𝑡), 𝑢(𝑡),  𝑡) to follow the optimal trajectories ℎ∗(𝑡) that minimize specified 

performance indices(𝐽).  

The selected performance index was selected to be quadratic and defined as 

Equation (12);   

 

𝐽 = 𝑚𝑖𝑛 ∫ [ℎ(𝑡) − ℎ𝑇]𝑇𝑡𝑓

𝑡0
𝑲𝒉[ℎ(𝑡) − ℎ𝑇]𝑑𝑡  

                (12) 

Subject to the system constraint; 

ℎ̇(𝑡) = 𝒇(ℎ(𝑡), 𝑢(𝑡),  𝑡)   ;  𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 

ℎ(𝑡0) =  ℎ0  

ℎ𝑡𝑓
= ℎ(𝑇) 

ℎ(𝑇) is the desired final value for the state vector while 𝑲𝒉 is a positive definite 

weighting matrix or scalar constant. 

 

3.1 DISCRETIZATION OF CONTROL AND STATES 

 

In order to use the dynamic programming approach, the continuous system is 

approximated to a discrete system by quantizing the admissible control, state and 

time to a finite level. This was achieved by subdividing the time interval into 𝑁 > 1 

control state: 

 

 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 = 𝑡𝑓. 

In each of the sub-interval, (𝑡𝑖−1, 𝑡𝑖) approximate 𝑢(𝑡) = 𝑢𝑖(𝑡), such that: 

 

  𝑈(𝑡) = [𝑢1, 𝑢2, 𝑢3, … . . 𝑢𝑁].  
 

The problem can then be solved using dynamic programming as the optimization 

method. 

 

 

3.2 A DYNAMIC PROGRAMMING SOLUTION  

As earlier mentioned, dynamic programming algorithms are effective in solving 

problems related to control of multi-reservoir system operation. To use the dynamic 

programming approach, the continuous control problem system is approximated by 

quantizing the admissible control, state and time to a finite level with optimal 

control required at each time interval.  
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The control algorithm is based on Figure 2, where the time interval 𝑡0 → 𝑡𝑓 is 

partitioned into [0  𝑇] =  ⋃ {𝑡𝑘, 𝑡𝑘+1, … }𝑁
𝑘=0 . 

 

Let 𝑘 represents the current discrete state of the system, where 𝑘 = [0,1,2, … , 𝑁].  

𝒖𝑖
𝑘(𝑡) is the allowable control selected at 𝑘, 𝒖(𝑡)  = [ 𝑢1(𝑡),  𝑢2(𝑡)] = [0,  1].  

The state 𝑘 + 1 is the state adjacent to 𝑘 which is reachable by application of 𝒖𝑖
𝑘(𝑡)  

at 𝑘. 

The operating head ℎ(𝑡0) =  ℎ𝑜 while the last operating head is as expressed as; 

𝒉(𝑁) =  𝒉(𝒖𝑖
𝑘=0(𝑡),  … ,  𝒖𝑖

𝑘−1(𝑡), 𝒖𝑖
𝑘(𝑡),  𝒖𝑖

𝑘+1(𝑡), … , 𝒖𝑖
𝑁−1(𝑡))  

The performance index measure for moving from 𝑘 → 𝑘 + 1 by application of 

𝒖𝑖
𝑘(𝑡) is represented by 𝑱(𝒖𝑖

𝑘(𝑡)).  

𝒉(𝒖𝑖
𝑘(𝑡)) represents the operating head at state 𝑘 by application of 

𝒖𝑖
𝑘=0(𝑡), … , 𝒖𝑖

𝑘−1(𝑡). 

𝑱(𝒖𝑖
𝑘(𝑡),  𝒖𝑖

𝑘+1(𝑡)) is the performance measure for moving from 𝑘 + 1 → 𝑘 + 2 by 

application of 𝒖𝑖
𝑘(𝑡) at 𝑘 and 𝑢𝑖

𝑘+1(𝑡) at 𝑘 + 1. 

𝒉(𝒖𝑖
𝑘(𝑡),  𝒖𝑖

𝑘+1(𝑡)) represents the head at state 𝑘 + 1 by application of 

𝑢𝑖
𝑘=0(𝑡),  … , 𝑢𝑖

𝑘(𝑡). 

 

The summation of min performance measure for moving from 𝑘 + 1 → 𝑁 by 

application of [𝑢𝑖
𝑘+1(𝑡), … , 𝑢𝑖

𝑁−1(𝑡)] is 𝑱𝝈(𝒖𝑖
𝑘+1(𝑡), … ,  𝒖𝑖

𝑁−1(𝑡)). 

𝑱𝝈(𝒖𝑖
𝑘(𝑡), … , 𝒖𝑖

𝑁−1(𝑡)): Summation of min performance measure for moving from 

𝑘 → 𝑁 by application of [𝒖𝑖
𝑘(𝑡), … , 𝒖𝑖

𝑁−1(𝑡)].  

 

From the principles of optimality; 

 𝑱𝝈(𝒖𝑖
𝑘(𝑡), … ,  𝒖𝑖

𝑁−1(𝑡)) = 𝑚𝑖𝑛{𝑱(𝒖𝑖
𝑘(𝑡),  𝒖𝑖

𝑘+1(𝑡)) + 𝑱𝝈(𝒖𝑖
𝑘+1(𝑡), … ,  𝒖𝑖

𝑁−1(𝑡))} 

𝒖∗(𝑡) is the set of controls [𝒖𝒊
𝒌(𝒕), … , 𝒖𝑖

𝑁−1(𝑡)] resulting at 𝑱𝝈(𝒖𝑖
𝑘(𝑡), … ,  𝒖𝑖

𝑁−1(𝑡)) 

 ℎ∗ is the resulting head from 𝒖∗(𝑡). 
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FIGURE 2. Optimal Control: Dynamic Programming Approach 

 

4. RESULTS 

The implementation and result of the procedure presented in section 3 are 

presented in this section. The dynamic programming algorithm was implemented in 

an EXCEL VBA® programming environment. Hence the algorithm can run on most 

commonly available machines, provided it has Microsoft Office installed. 

Figure 3 illustrates the graphical implementation of the control procedure for the 

optimal control of JHEPS. Recall that 𝒖(𝑡)  = [ 𝑢1(𝑡),  𝑢2(𝑡)] = [0,  1], where 

𝑢1(𝑡) = 2000 𝑚3/𝑠 ≡ 0 and 𝑢2(𝑡) = 4000 𝑚3/𝑠 ≡ 1.  The time interval is 24 ℎ𝑟𝑠 

and this time is partitioned into four (6 ℎ𝑟𝑠 interval) discrete states represented by 𝑘. 

The operating condition has ℎ0 = 25.8 𝑚 and  ℎ(𝑇) = 26.1 𝑚. The number of 

operating machines is 5 units. 
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FIGURE 3. Layout Network of Optimal Control Design Based Dynamic 

Programming 

 

The model was numerically integrated form 𝑡 = 0 to state 𝑘 = 1 with the two set 

of controls 𝑢(𝑡) = [0,1]. In each case, the performance index was computed. This 

procedure was repeated until 𝑘 = 𝑁. The result obtained is presented in Figure 4 

showing the operating head at each state and the performance index relating to a 

control decision. 

In other to compute the optimal path and hence optimal control, the feasible paths 

are presented in Table 1. Observation of Table 1 shows the optimal path to be in 

serial number 12. Similarly, Figure 5 shows the plot of the performance index 

against the associated paths. The optimum point, the performance index must be 

minimum. This is evident at the point marked X in Figure 5. 

Hence, the optimal control required for moving the operating head of JHEPS from 

ℎ0 = 25.8 𝑚 to ℎ(𝑇) = 26.1 𝑚 in 24 ℎ𝑟 is by the release of inflow from KHEPS as 

follows: 4000 𝑚3/𝑠 for the first six hours, 4000 𝑚3/𝑠 in the second six hours, 

2000 𝑚3/𝑠 in the third and 2000 𝑚3/𝑠 in the last six hours. Under this condition, 
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the head trajectory is as presented in Figure 6.  

 

 

 
FIGURE 4. Dynamic Programming Solution to an Optimal control of JHEPS 

 

TABLE 1.  

Feasible Paths and Associated Performance Index 

 

  

S/No 

𝒖𝒊
𝒌(𝒕) 

∑ 𝒖𝒊
𝒌(𝒕)

𝟒

𝒌=𝟏

 

𝑱𝒌 

∑ 𝑱𝒊

𝟒

𝒊=𝟏

 

𝒌 𝒌 

1 2 3 4 1 2 3 4  

0 0 0 0 0  0  1463.9 1173.48 915.62 690.14 4243.139 

1 0 0 0 1  1  1463.9 1173.48 915.62 355 3908.008 

2 0 0 1 0  1  1463.9 1173.48 513.55 92.587 3243.522 

3 0 0 1 1  2  1463.9 1173.48 513.55 37.338 3188.273 

4 0 1 0 0  1  1463.9 704.351 183.98 92.587 2444.815 

5 0 1 0 1  2  1463.9 704.351 183.98 37.338 2389.566 

6 0 1 1 0  2  1463.9 704.351 62.303 52.676 2283.231 

7 0 1 1 1  3  1463.9 704.351 62.303 277.83 2508.383 

8 1 0 0 0  1  927.582 307.005 183.98 92.587 1511.15 

9 1 0 0 1  2  927.582 307.005 183.98 37.338 1455.901 

10 1 0 1 0  2  927.582 307.005 62.303 52.676 1349.566 

11 1 0 1 1  3  927.582 307.005 62.303 277.83 1574.718 

12 1 1 0 0  2  927.582 118.784 11.779 52.676 1110.821 

13 1 1 0 1  3  927.582 118.784 11.779 277.83 1335.973 

14 1 1 1 0  3  927.582 118.784 171.02 537.5 1754.883 

15 1 1 1 1  4  927.582 118.784 171.02 1079.6 2296.952 

                    Min J =1110.821 
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FIGURE 5. Performance Index Against Feasible Path 

 

 

FIGURE 6. Optimal Control 
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FIGURE 7. Head Trajectory resulting from the Optimal Control 

 

5. CONCLUSION 

The paper has presented the potential of the dynamic programming for the 

solution of optimal control of JHEPS. The algorithm is effective with even two-level 

of controls. The accuracy can be improved by improving the control level to four but 

the algorithm becomes computationally intensive and consumes memory space due 

to the curse of dimensionality. Hence it would be appropriate to maintain to the two 

levels of controls. Therefore, operators can depend on this control procedure for the 

optimal management of the scarce generating resources while further work can be 

carried out for the realization of the physical control system. 
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