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ABSTRACT 

Low-Density-Parity-Check (LDPC) based error control decoders find wide range of 

application in both storage and communication systems, because of the merits they 

possess which include high appropriateness towards parallelization and excellent 

performance in error correction. Field-Programmable Gate Array (FPGA) has 

provided a robust platform in terms of parallelism, resource allocation and excellent 

performing speed for implementing non-binary LDPC decoder architectures. This 

paper proposes, a high throughput LDPC decoder through the implementation of 

fully parallel architecture and a reduction in the maximum iteration limit, needed for 

complete error correction. A Galois field of eight was utilized alongside a non-

uniform quantization scheme, resulting in fewer bits per Log Likelihood Ratio 

(LLR) for the implementation. Verilog Hardware Description Language (HDL) was 

used in the description of the non-binary error control decoder. The propose decoder 

attained a throughput of 10Gbps at 400-MHz clock frequency at 10 iterations when 

synthesized on a ZYNQ 7000 Series FPGA. The decoder’s percentage utilization of 

the Look Up Table (LUT), Register (FF), and Latch are 96.00, 14.00 and 7.00 

percent respectively. 

Keywords: Non-binary low-density parity-check (NB-LDPC) codes, Field-

Programmable Gate Array (FPGA), error correction, Variable Node (VN), Check 

Node (CN), Log Likelihood Ratio (LLR), iterative decoding.   

 

1. INTRODUCTION 

A unique type of block codes called Low Density Parity Check (LDPC) codes 

have found extensive application in storage architectures and communication 

channels. Within a communication channel, they are used primarily to correct errors 

transmitted in the system. With respect to storage architectures, they are 

implemented to ensure data recovery and storage reliability. LDPC codes have 

enjoyed much attention from the research community. Gallager in 1962, was the 

first to propose them [1], but as a result of their very high complexity, they were 

regarded impractical for implementation. This resulted in them being unused for 

several years. As a result, little or nothing could be achieved in avenues requiring 

specific implementation of the code. But these all changed in 1996, when LDPC 

codes were discovered again, this time by Mackay and Neil [2]. This was as a result 

of their superior performance and capability, and perhaps also because of the license 

fee resulting from the patenting of turbo codes. Since that time, LDPC codes have 

experienced a reawakening in various applications [3]. 
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Given the development and advancement in computation power and efficiency 

today, LDPC codes have become an integral part in diverse standardized and 

commercial communication infrastructures. They have important characteristics that 

make them most suitable for implementation in various systems. LDPC codes also 

work with certain decoding algorithms [4]. These algorithms are implemented using 

reduced degree of complexity. This complexity is measured in the number of 

calculations and the length of time of decoding. Algorithms with low complexity 

will often result in a simple architecture and as a result, a reduced cost of 

implementation [5]. This will also translate into lower hardware resources that will 

be needed to implement such an architecture. The amount of hardware resources 

used in the implementation of algorithms contribute significantly in determining the 

effectiveness of the architecture. LDPC codes have a feature of iterative decoding, 

unlike the turbo codes. This makes it possible for the codes to attain excellent 

performance in error correction. Such performance can attain the limit theoretically 

established called the Shannon limit. This is achieved when messages with large 

block lengths are decoded [6]. 

LDPC decoders have various decoding algorithms that can be implemented to 

achieve specified design. A very important factor that also comes to play when 

decoding algorithms are being implemented is what is called the degree of 

parallelism. This is the number of nodes allowed to be processed at the same time. 

Designers are therefore provided with various techniques to attain the desired 

architecture [7].  Furthermore, an LDPC decoder consists of individual elements 

being processed together. An interworking of a number of architectural features 

constitute a complete implementation of an LDPC decoder in its entirety. They 

include, hardware resource utilization, processing throughput and error correction 

performance [4]. These features rely on certain architectural parameters, namely the 

type of architecture, feature of the LDPC code used, number of iterations and the 

algorithm employed. This structure is shown in Figure 1. These features depend on 

capability of the LDPC code to correct errors. The error correction capability of an 

LDPC code plays a critical role in the functionality of the decoder. It can be 

improved through various means, one of which is the alteration in the decoding 

iteration limit. A more powerful LDPC code would require fewer iterations for error 

correction [8]. 
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FIGURE 1. FPGA-based LDPC decoder system parameters and features 



 

 

Computer Engineering and Applications Vol. 9, No. 3, October 2020 

 

ISSN: 2252-4274 (Print)   167 

ISSN: 2252-5459 (Online) 

 

The number of iterations can also be increased to allow for errors present to be 

corrected. But this will have another effect on the decoder. As the number of 

iterations is increased, the degree of complexity is also increased. As a result, 

energy efficiency is compromised. The design of the decoder architecture involves a 

holistic view of all parameters so as to ensure optimal effectiveness and efficiency 

[7]. 

As a result of the demand for high throughput in error control decoders, recent 

research works [8] [9] [10], have focused on using large Galois fields (for example 

GF(256), GF(64) and GF(32)), for the representation of the processing nodes while 

only a subset of that Galois field is used to implement the intermediate messages 

passed between the nodes during processing. This approach results in the reduction 

in the hardware complexity, but does not necessarily increase the throughput of the 

decoder [11]. The implementation of partial parallelization in the decoder 

architecture is another technique adopted to increase the throughput. But, the 

maximum throughput that can be attained is limited because of the layered 

processing of the nodes. Though this technique slightly improves the throughput, 

higher values are achievable through a fully parallel design for LDPC codes [12]. 

The downside to this technique, is the large increase in the interconnect routing 

wires which eventually leads to a very complex decoder structure. 

Hence motivated by the above literatures, a decoder that achieves higher 

throughput through the use of a small Galois field, and a fully parallel architecture is 

presented. The high decoder complexity that results from the full parallelization is 

lowered by the implementation of the small Galois field of eight. The proposed 

decoder also achieves an error correction capability at a reduced number of 

decoding iterations.  

The rest of the paper is structured as follows, Section I covers the introduction of 

Low Density Parity Check Codes, section II discusses the materials and methods of 

code design and implementation, section III covers the results and discussion of 

decoder implementation, section IV covers the conclusion and section V lists the 

references.  

 

2. MATERIAL AND METHODS 

The LDPC code design comprises of two part which includes, the LDPC code 

characteristic design and the Tanner graph representation. 

 

2.1 LDPC CODE CHARACTERISTIC DESIGN  

 

A very important property of the LDPC code is its sparse parity check matrix. 

This property comes to play when decoding algorithms are implemented during 

error correction. The sparsity of the matrix involves distribution of both non-zero 

and zero elements, such that the zero elements occupy a majority of the slots. 

Important parameters that describe a parity check matrix include the word length, 

the parity bit number and the dimension. The non-zero elements that occupy a row 

constitute its row weight, while the non-zero elements that occupy the column 

determines the column weight. LDPC codes of our method are classified into two 
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categories based on constituent individual element position and weight: 

i. A scenario where the column weight and the row weight of the parity check 

matrix are equal for each column and row. This is termed a regular LDPC 

code.  

ii. A scenario where the column and row weights differ for each column and 

row. This is called an irregular LDPC code. 

The parity check matrix is constructed by using a masked base matrix. The 

masked base matrix (B) is given in Equation (1). This matrix, B is a regular matrix. 

From the first row to the last row of B, it is seen there are non-zero elements 

occupying some edges, while other positions contain zero element The number of 

non-zero elements in B is equal for all rows. Likewise, the columns have an equal 

number of non-zero elements from the first to the last. There is constant column 

weight and constant row weight. The parity check matrix is built by first allocating 

the weight of the columns and rows, and then randomly placing the non-zero 

elements in their appropriate location. Definitely, the LDPC code should not be 

dense, having much less non-zero elements than zeros. The masked base matrix is 

the foundational structure for the construction of the LDPC code. It is constructed by 

concatenating many smaller matrices of the same size. 

 

Bq = 

[
 
 
 
 
 
 
 
 
0 0 6 0 8 0 10 0 0 0 0 15 0 17 0 19 0 0 0 0 51 0 55 0 58 0 0 0 0
0 0 0 11 0 16 0 19 0 0 0 0 35 0 39 0 43 0 0 0 0 54 0 57 0 60 0 0 0
0 0 0 0 13 0 18 0 23 0 0 0 0 37 0 43 0 46 0 0 0 0 57 0 60 0 62 0 0
7 0 0 0 0 18 0 21 0 27 0 0 0 0 41 0 45 0 49 0 0 0 0 59 0 62 0 64 0
0 10 0 0 0 0 20 0 25 0 34 0 0 0 0 45 0 48 0 52 0 0 0 0 62 0 64 0 66
9 0 14 0 0 0 0 23 0 29 0 37 0 0 0 0 47 0 51 0 56 0 0 0 0 64 0 66 0
0 12 0 16 0 0 0 0 27 0 36 0 40 0 0 0 0 50 0 54 0 59 0 0 0 0 66 0 68
11 0 16 0 18 0 0 0 0 31 0 39 0 42 0 0 0 0 53 0 58 0 62 0 0 0 0 68 0
0 14 0 18 0 30 0 0 0 0 38 0 42 0 46 0 0 0 0 56 0 61 0 64 0 0 0 0 70]

 
 
 
 
 
 
 
 

     (1) 

 

To get the parity check matrix from the masked base matrix, each non-zero 

element of B is replaced by a square matrix over Galois field of eight, called circular 

permutation matrix (CPM), and each zero element of B is replaced by a square 

matrix of zero element. The CPM is illustrated in equation (2) while the zero matrix 

is illustrated in equation (3). The null space of the parity check matrix gives the non-

binary LDPC code. 

 

𝐶𝑃𝑀 =  

[
 
 
 
 
 
 
1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 7 1 3 3 4 5
7 1 2 3 4 5 6]

 
 
 
 
 
 

                                             (2) 

 

 

𝑍𝑀 =  

[
 
 
 
 
 
 
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

                                             (3) 
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2.2 TANNER GRAPH REPRESENTATION 

 

The LDPC code is depicted using a bipartite graph. This is also called a Tanner 

graph. The tanner graph gives the pictorial view with important information about 

the degree of the check and bit nodes. The rows that make up the parity check matrix 

illustrate the parity check equation and each column illustrate a code-word bit. 

Taking the matrix in Equation (1), the top row of B gives the equation of parity 

check. The bipartite graph shows the connections between the code-word bits and the 

parity check equation. If a non-zero element occupies a node, then that node 

represents a connection between the equation of parity check and the corresponding 

code-word bit. A section of the Tanner graph for the LDPC code is shown in Figure 

2. The complete parity check matrix cannot be shown because of its enormous size. 

When a path in the parity check matrix starts with a code-word bit and ends with that 

same code-word bit, that trajectory is forms a cycle. 

A bipartite graph can have a cycle of smallest length called the girth. Girth plays 

a very important role during error correction. A value of 4 is established from 

literature to cause degradation in the error correction performance of LDPC codes. 

As a result, a minimum girth size of six is recommended when designing LDPC 

codes, and is thus used in constructing the non-binary LDPC code. Figure 2 presents 

an illustration of a section of the tanner graph utilized in the proposed decoder. 

Edges

C1 C2 C3 C4

V1 V2 V3 V4 V5 V7 V8 V10V6 V9

q1-1

C5

r5-10

L1 L3L2 L10L9L8L7L6L5L4

Variable nodes

Check nodes

 

FIGURE 2. Tanner graph for example LDPC code 

The connections 𝐿𝑖  above each VN in Figure 2 pertain to LLRs associated with 

the N code-word bits of c. When there is a non-zero element present in the parity 

check matrix, it creates an edge. An edge links the 𝑖𝑡ℎ variable node, VN 𝑣𝑖 to the 

𝑗𝑡ℎ check node CN 𝑐𝑗. An edge represents each element of 𝐻𝑖𝑗 = 1. A node’s 

(VN/CN) degree is stated as the number of other nodes (VN/CN) that it is linked to. 

This parameter is also equivalent to the respective row/column weight in the parity 

check matrix. The check node degree as well as the variable node degree are vital 

parameters used in the construction of LDPC code. In a situation where all the 
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variable nodes and all the check nodes have the same degree, then a regular LDPC 

code is created. The tanner graph of the LDPC code used for the proposed decoder 

could not be shown because of the large number of interconnect wires and the 

processing nodes. In the row-column processing, all rows of one block column of 

the parity check matrix are processed at a time. 

2.3 DECODER IMPLEMENTATION 

The practical implementation of the decoder hardware design is determined by its 

architectural considerations. Architectural decisions influence the physical 

implementation and hardware used by the decoder. The proposed decoder 

implementation takes into consideration the architectural parameters LLR 

representation, clock frequency, degree of parallelization and number of decoding 

iterations. The first parameter for consideration is the degree of parallelization. A 

fully parallel architecture was synthesized, as shown in Figure 3. In this architecture, 

one computation unit is implemented for individual column and individual row of 

the parity check matrix. The processing of all rows and columns is carried out 

simultaneously, and hence fully-parallel decoders can achieve the highest 

throughput. Since there is one dedicated unit for each check node and each variable 

node, the check node units (CNUs) and variable node units (VNUs) are connected 

by hard wires to pass the messages. The V2C permutation in Figure 3 is the routing 

networks that cause the switching of the v2c messages to the appropriate CNUs. 

Likewise, the C2V inverse permutation represents the reverse routing links that are 

needed to direct the c2v messages to the correct VNUs. The number of routing 

networks required is determined by the number of CNUs and VNUs instantiated. 
V
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FIGURE 3. Architecture of the fully parallel non-binary LDPC (NB-LDPC) 

decoder. 
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The reduced number of decoding iterations restriction implemented in the 

decoder played an important role in determining the throughput and error correction 

performance of the decoder. A stopping criterion is put in place to prevent the 

decoder from continuous decoding in case it encounters uncorrectable errors.  

 

3. RESULTS AND DISCUSSION 

The entire decoder architecture based on the variable node unit and the check 

node unit was synthesized and implemented on the ZYNQ FPGA. Verilog HDL was 

used in describing the hardware architecture. Xilinx Vivado SoC Design suite was 

used for the synthesis and implementation of the decoder architecture. Table 1 

illustrates the result of the synthesis and implementation of the NB-LDPC decoder. 

TABLE 1. 

Output of the NB-LDPC decoder 

 
Parameter Value 

Technology 28nm 

Quantization 3 bits 

Clock Frequency (MHz) 400 

No. of iterations 10 

Coded Throughput (Gbps) 10 

 

The throughput of an error control decoder is perhaps its most important feature. It 

is defined as the total number of bits that is processed per second. Very high 

processing throughputs provide avenues for the implementation of very high speed 

data transfers. The throughput of the decoder is calculated as follows [8]: 

𝑇 =  
𝑓𝑐𝑙𝑘×𝑁×𝑝

𝐼𝑚𝑎𝑥×(𝑀+𝑑𝑣×𝐷)+(𝑞−1)
𝑀𝑏𝑝𝑠                             (4) 

where 𝑓𝑐𝑙𝑘 denotes maximum clock frequency, 𝐼𝑚𝑎𝑥  the maximum number of 

iterations N, the total number of variable node units, 𝑀, the total number of check 

node units 𝑝, the parallelism factor, 𝑑𝑣, the variable node degree 𝐷,  the pipeline 

stages used in the design and 𝑞, the Galois field. 

TABLE 2. 

Summary of utilization report of resource usage 

 
Resource Utilization Performance (%) 

LUT 49763 96.00 

Register (FF) 14598 14.00 

Register (Latch) 7296 7.00 

 

The Utilization Report breaks down the design utilization based on resource type 

of the logic elements contained in the FPGA. The percentage usage of the LUT, 

Register (FF), and Latch are 96.00, 14.00 and 7.00 percent respectively. Table 2 
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gives the available resource provided by the FPGA, along with the number of logic 

resource utilized. Various state of the art error control decoders are compared with 

the proposed decoder to illustrate the excellent performance of the proposed 

decoder. Table 3 gives the comparison of the parameter and results of various state 

of the art non-binary decoders. Empty slots are due to unavailable information from 

the authors of the work. 

TABLE 3. 

Performance Comparison of NB-LDPC Decoders 

 

 

TCAS II 

2015 

[14] 

JSSC 2015 

[13] 

TVLSI 

2014 

[15] 

IEEE 2018 

[16] 

IEEE 2019 

[8] 

This 

Decoder 

Code (168,84) (160,80) -- (327) (837,726) (576,288) 

Galois Field GF (16) GF (64) GF (256) GF (8) GF (32) GF (8) 

Algorithm CTFM EMS RTBCP 
A-IHRB & 

MM 
TMM MM 

No. of 

Iterations 
10 10 -- -- 4 10 

Quantization 

(bits) 
5 5 5 3(log) 6 3 

Technology 90nm 65nm 28nm 40nm 90nm 28nm 

Utilization (%) -- 87 75.7 89.5 -- 96 

Frequency 

(MHz) 
286 700 520 120 526.32 400 

Power (mW) -- 3704 976 212.4 -- 43244 

Throughput 

(Gbps) 
1.131 1.221 0.436 2.267 4.681 10.010 

 

The relaxed half-stochastic non-binary LDPC decoder presented in [14] has a 

feature of (168,84), GF (16) code developed in 90nm CMOS. It focuses on lower 

algorithm complexity and achieved a 1.13Gbps throughput at 286MHz frequency. 

The fully parallel decoder of [13] implements a (160, 80),  non-binary code in 65 nm 

CMOS.  This decoder has a fully parallel nature and achieved a throughput of 

1.22Gbps at 700MHz frequency. A technique of clock gating and node successive 

allocation were implemented to achieve low power and throughput. The decoder in 

[15] used a  Relaxed Trellis Based Check Processing (RTBCP) algorithm to lower 

the complexity in the computation of the check node process. This was achieved 

with a fully parallel architecture in 28nm CMOS. A throughput of 546Mbps was 

attained using a GF (256). 

The non-binary LDPC decoder implemented in [16] is unique in that it 

incorporated two decoding algorithms namely the Iterative Hard reliability based 

algorithm and the Min-Max algorithm. A quantization scheme that is logarithmic in 

nature was also used to reduce the message bit size and lower the hardware 

complexity. A throughput of 2.267Gbps and 212.4mW was attained when 

implemented in 40nm CMOS. The Trellis Min–Max (T-MM) decoder in [8] 

implements an early termination technique that quickly lowers the decoding 
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iterations. This is achieved with appreciable error control and throughput. A 

throughput of 4.68 Gbps was achieved at 700MHz frequency using 90nm CMOS 

technology. 

The non-binary decoder presented in this work was synthesized on the ZYNQ 

7000 FPGA. This parallel decoder architecture processes all the nodes in the 

scheme. It consumes a lot of power as a result of the large amount of logic resource 

utilized. This decoder design synthesized on the FPGA achieves a throughput of 

10Gbps, and consumed a total power of 43.244W. This throughput is desirable for 

enterprise cloud applications and the 5G network paradigm. 

 

4. CONCLUSION 

The proposed decoder implements a fully-parallel architecture and as a result has 

very high hardware resource requirements and complexity. The feature of the 

instantiation of more parallel processors enable the FPGA-based LDPC decoder 

architecture to decode more bits per second. Row-column processing is used, which 

aids in decreasing the processing time of each iteration. It also improves the 

throughput by utilizing a Galois field of eight. The decoder implements a full 

instantiation of the processing nodes and decoder termination to achieve a very high 

throughput of 10 Gb/s at 400 MHz, consuming a total power of 43.2W. A time-

critical applicable throughput is demonstrated the decoder. 
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