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ABSTRACT 

Compressed sensing (CS) is a data acquisition technique that is gaining popularity 

because of the fact that the reconstruction of the original signal is possible even if it 

was sampled at a sub-Nyquist rate. In contrast to the traditional sampling method, in 

CS we take a few measurements from the signal and the original signal can then be 

reconstructed from these measurements by using an optimization technique called 

l1-minimization. Computer engineers and mathematician have been equally 

fascinated by this latest trend in digital signal processing. In this work we perform 

an evaluation of different l1-minimization algorithms for their performance in 

reconstructing the signal in the context of CS. The algorithms that have been 

evaluated are PALM (Primal Augmented Lagrangian Multiplier method), DALM 

(Dual Augmented Lagrangian Multiplier method) and ISTA (Iterative Soft 

Thresholding Algorithm). The evaluation is done based on three parameters which 

are execution time, PSNR and RMSE.   

Keywords: Compressed sensing (CS), sub-Nyquist, l1-minimization, PALM, 

DALM, ISTA. 

 

1. INTRODUCTION 

 

Compressed sensing has gained its popularity due to the fact that it provides a 

means to reconstruct the signal despite violating the much celebrated Shannon-

Nyquist sampling theorem. The traditional method of taking samples from a signal 

is no longer used in compressed sensing. Instead we take only a few measurements 

from the signal using which the signal can be reconstructed. Care should be taken 

while taking these measurements because the efficiency of this process in turn 

affects outcome of the reconstruction algorithm. Though the crux of compressed 

sensing is the sub-Nyquist sampling, the signal should satisfy an essential condition 

for CS to work. The condition is that the signal should be sparse in the 

mathematical domain in which the measurements are taken. Though this seems to 

be a strict restriction on CS, since most of the natural signals like speech and image 

can be found to be sparse in any one mathematical domain, this problem can be 

easily overcome. So it is enough to transform the signal to the mathematical 

domain in which the signal is sparse. Usually the signals are sparse in the 
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Frequency domain and thus we use Discrete Cosine Transform (DCT) or Discrete 

Fourier Transform (DFT) to transform the signal from the time domain or spatial 

domain to the frequency domain. Discrete Wavelet Transform (DWT) can also be 

used for sparcifying the signal. The mathematics involved in CS is discussed in 

detail in the subsequent sections.  

 

Out of the many important aspects of CS, the choice reconstruction method is a 

very crucial one. This paper aims at finding out the appropriate reconstruction 

algorithm to be employed under different circumstances. We evaluate three most 

commonly used reconstruction algorithms for their performance. The power of CS 

lies in the design of an efficient measurement matrix and the use of an efficient 

reconstruction algorithm. In this paper we attempt to answer the latter issue. 

 

1.1 HISTORY OF CS 

 

Compressed sensing was discovered by Emmanuel Candès in 2004. Candès was 

trying to clean up a highly corrupted version of the Shepp-Logan Phantom image. 

He performed a mathematical technique called l1-minimization on the noisy 

phantom image expecting it to slightly enhance the image. The outcome of this 

experiment was very surprising even to Candès himself as it gave nearly impossible 

results. The output obtained was very sharp and the image was perfect in every 

detail. This was a revelation to the entire signal processing community and 

mathematicians alike. Candès then discussed this result with a colleague Terrance 

Tao and both of them together formulated the basic theory behind this „magic‟. 

That was the beginning of an entire new field of mathematics called Compressed 

Sensing or Compressive Sensing (CS). Candès explains the mathematics behind 

this in [1] and [2]. D.L.Donoho discusses CS in detail in his work [3]. A lot of 

researchers have taken to CS since Candès introduced it to the scientific 

community. CS has been used in numerous applications by scientists, researchers 

and students alike. The mathematical approaches in CS were presented in the work 

of Jianhua Zhou, Siwang Zhou and Qiang Fan [4]. The major applications of CS 

over the years have been medical image processing, satellite image processing, 

speech processing, network power optimization, digital communication etc. Yi 

Zhong and Jiahou Huang present an improved Reconstruction Algorithm based on 

Compressed Sensing for power quality analysis in wireless sensor networks in [5]. 

 

Since its birth, CS has been applied on numerous areas of research. The first 

application where CS was used was MRI imaging. Unlike the traditional MRI 

imaging which took relatively longer time to obtain the image, CS could extract 

enough samples (measurements) from which a high quality MRI image can then be 

reproduced with the help of l1-minimization. This was just a beginning, what 

followed was a flurry of algorithms based on CS from all parts of the world. CS 

was applied on almost all signal processing tasks. Researchers from Rice 
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University later developed a hardware based on CS, a single pixel camera. With 

traditional digital camera, samples are first taken and then the unwanted samples 

are dropped during compression. This is an absolute wastage of time and 

processing power and CS fits in to overcome this limitation perfectly. Instead of 

sampling and then dropping samples, CS enables to take only those samples that 

are essential in reconstructing the original signal and thereby improving the 

performance in terms of processing time and processing power. The single pixel 

camera uses a low-cost, fast and sensitive optical detection technique to take the 

measurements. The measurements are taken based on a random basis matrix. And 

these measurements are found to be sufficient to reconstruct the image using l1-

minimization. This single pixel camera saves storage space, processing time and the 

hardware cost when compared to the traditional many pixel cameras.  

 

2. MATHEMATICS OF CS 

 

The whole theory of Compressed Sensing is based on the famous matrix equation

y Ax . Any signal can be mathematically thought of as a vector. The underlying 

matrix problem is to find x, given y and A. The formulation of the whole problem is 

given in this section.  

 

                                                                                                                                            (1)y Ax

 

Equation (1) is interpreted in CS context as explained below. 

 

y is the observed signal, A is the measurement matrix and x is the original signal. 

Let us assume that the original signal x is of size N X 1. As per CS theory, we need 

to take only lesser measurements than the Nyquist rate for a good reconstruction of 

the signal. This requires the observed signal y to be of size much lesser than that of 

the original signal. Assuming the size of y to be M X 1, we require that M << N i.e. 

M should be very very less than N. This can be accomplished by properly designing 

the measurement matrix A with size M X N. Effectively; M measurements are taken 

from a signal of size N with the help of a measurement matrix A. A lot of research 

has gone into the designing of a good measurement matrix. The better the 

measurement matrix the better would be the signal after reconstruction.  

 

The CS theory has two aspects: first the sensing aspect or the process of taking the 

measurements at a sub-Nyquist rate and the second is the reconstruction aspect or 

the process of generating the original signal from the measurements obtained from 

the sensing phase. The sensing was performed by using measurement matrix or 

sensing matrix. The reconstruction is done by performing a mathematical technique 

called l1-minimization. But as per the CS theory, l1-minimization gives a good 

reconstruction only if the original signal is a sparse one. There are many different 

ways to transform a natural signal from non-sparse form to sparse form. 
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Mathematical transformation like Cosine Transform, Fourier Transform, Wavelet 

Transform etc can be used to achieve this. These transforms are used to transform 

the signal from the time or space domain to other mathematical domains in which 

the signal has a sparse representation. Before the l1-minimization can be applied, 

we are required to perform the sparcification on the signal. This has to be 

incorporated in the formulation as well; resulting in the following formulation. 

 

                                                                                                                                       (2)y A

 

Here   is the matrix that transforms the signal from one mathematical domain to 

another domain where the signal can be represented as a sparse signal called the 

transformation matrix or sparcifying matrix. The vector   is the vector of co-

efficients resulting from applying   on x.  

 

                                                                                                                                          (3)x 

 

Since x  is of size   1N X ,   is obviously of the same size and   should therefore 

be of size   N X N . 

 

As mentioned earlier, CS can be understood as a combination of two sub-problems: 

first taking measurements from a signal and then reconstructing the signal from 

these measurements. The vector y is the output of the first sub-problem of taking 

measurements at a rate less than the Nyquist rate. This follows from the fact that y

is of much smaller size than the vector x  that corresponds to the original signal. 

Solving the second sub-problem is trickier than the first one and utilizes the power 

of l1-minimization. CS theory is based on the fact that the minimum l1-norm 

solution to an underdetermined system of linear equations is also the sparsest 

possible solution under quite general conditions. Mathematically, suppose there 

exists an unknown signal   nx R , a measured vector  (d<<n)dy R , and a 

measurement matrix A Rd n    such that A is a full rank matrix and if y Ax , then 

x  can be exactly recovered by computing the minimum l1-norm solution.  

 

The standard l1-norm function is taken as the objective function to be minimized 

with respect to the primal variable x . The objective function is minimized with 

respect to the linear constraint Ax y . The whole CS problem thus can be 

formulated as an optimization problem. The formulation of the problem is, 

 

1
min     ; such that                                                                                                         (4) 

x
x Ax y

 

 

Many algorithms have been used for solving this optimization problem since CS 

became popular among researchers. This paper aims at evaluating some of the l1-
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minimization algorithms in the context of CS. The algorithms being evaluated are 

PALM (Primal Augmented Lagrangian Multiplier method), DALM (Dual 

Augmented Lagrangian Multiplier method) and OMP (Orthogonal Matching 

Pursuit). In the following section a brief description of these algorithms is given. 

 

3. L1-MINIMIZATION ALGORITHMS 

 

3.1.1 ISTA (ITERATIVE SOFT THRESHOLDING ALGORITHMS) 

 

This algorithm utilizes an approach called Majorization-Minimization (MM) that 

has become quite popular over the years and is useful for numerous problems in 

signal processing: denoising, deconvolution, interpolation, super-resolution, 

declipping, etc [6]. Majorization-minimization is a technique in optimization theory 

which proceeds by choosing a function that majorizes (maximizes) the objective 

function. After majorization step the chosen function is minimized to obtain the 

solution. The complete derivation of ISTA can be found in [7]. The derivation 

utilizes many concepts of linear algebra and vector derivatives. ISTA is a 

combination of two techniques called Landweber algorithm and Soft thresholding 

and therefore is also known by the name Thresholded-Landweber algorithm. 

Landweber algorithm is an iterative method in which the iteration continues till the 

solution converges. Landweber iteration is followed by soft thresholding to obtain 

the final solution.  

 

3.1.2 AUGMENTED LAGRANGIAN MULTIPLIER METHODS  

 

Primal Augmented Lagrangian Method and Dual Augmented Lagrangian methods 

are both formulated in a similar manner with the addition of a new term called as 

the Lagrangian Multiplier. Lagrangian Multiplier methods have become popular in 

the area of convex programming. In these methods we eliminate the equality 

constraints and add a penalty term to the objective function. Our objective is to 

solve the system of equations Ax y . But in practical situations, the solution to this 

is likely to introduce some error or in other words  Ax  may not be exactly equal to

y . Therefore for practical cases we consider Ax y , which can be rewritten using 

the equality as Ax r y  ; where r  is the error or the residual term. The objective 

thus becomes minimizing the norm of x  as well as the norm of the residual r . The 

two variations of Augmented Lagrangian Multiplier methods are Primal ALM 

(PALM) and Dual ALM (DALM). In DALM, the dual form of the Lagrangian of 

the objective function is minimized to obtain the solution.   A detailed description 

along with the derivation of ALM methods can be found in [8] and [9]. An insight 

into PALM can also be found in [10].  
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4. EXPERIMENTS AND RESULTS 

 

In this paper the experiments are aimed at evaluating the l1-minimization methods 

discussed in the previous section in the context of CS. The measurement matrix A , 

used in our experiments is orthogonal random matrix and DCT matrix is used as the 

transformation matrix . The evaluation is done based on execution time, Root 

Mean Squared Error (RMSE) and Peak Signal to Noise Ratio (PSNR). A speech 

signal with 1000 samples is used as x  and we attempt the reconstruction from as 

little as 50 measurements.  

 

Figures 1,2 and 3 shows the original signal against the signal reconstructed from 

different number of measurements using Primal Augmented Lagrangian Multiplier 

method, Dual Augmented Lagrangian Multiplier method and Iterative Soft 

Thresholding Algorithm respectively. 

 

 

 
 

FIGURE 1: Signal reconstruction using PALM 
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FIGURE 2: Signal reconstruction using DALM 
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FIGURE 3: Signal reconstruction using ISTA 

 

It is evident from the above figures that for a signal of 1000 samples, good 

reconstruction is possible with 300 measurements. For many applications, an 

acceptable level of reconstruction accuracy can be achieved from even lesser 

measurements. Table1 provides a detailed comparison of the three algorithms that 

were discussed in the previous sections.    

 

TABLE 1. 

Performance comparison of PALM, DALM and ISTA 
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1000 1.331 116.189 0.001 1.137 62.958 0.005 0.593 24.516 0.412 

900 3.892 46.953 0.031 0.964 49.195 0.024 0.586 48.943 0.026 

800 3.923 42.334 0.053 0.868 40.933 0.062 0.549 41.768 0.056 

700 4.056 35.686 0.114 0.835 34.563 0.129 0.487 37.757 0.089 

600 3.639 30.722 0.202 0.634 32.108 0.172 0.459 32.141 0.171 

500 3.543 26.934 0.312 0.552 27.218 0.301 0.413 28.157 0.271 

400 3.195 23.219 0.478 0.496 22.881 0.497 0.393 23.403 0.468 

300 3.379 20.066 0.688 0.371 20.442 0.659 0.297 18.978 0.779 

200 2.854 16.561 1.029 0.209 17.178 0.959 0.254 16.036 1.093 

100 3.346 12.735 1.599 0.169 13.201 1.516 0.348 12.512 1.641 

50 2.909 10.169 2.149 0.126 10.459 2.079 0.192 11.037 1.944 

 



ISSN: 2252-4274 (Print)         51 

ISSN: 2252-5459 (Online) 

The comparison results are better explained by the graphs presented in Figure4, 5 

and 6. The graphs plot PSNR, RMSE and Execution time against the number of 

measurements taken. 

 

 
 

FIGURE 4. Comparison based on PSNR 

 

 

 
 

FIGURE 5. Comparison based on RMSE 
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FIGURE 6. Comparison based on execution time 

 

 

5. CONCLUSION 

 

In this paper, three signal reconstruction algorithms are evaluated for the 

performance in the context of compressed sensing. Apart from performance 

evaluation this work emphasis the power of l1-minimization based reconstruction 

algorithms. The evaluation is done based on execution time, PSNR and RMSE. For 

PALM the execution time is found to be higher than that of the other two 

algorithms, but with respect to PSNR and RMSE, PALM produced results 

comparable with DALM and ISTA. Excellent reconstruction of the original signal 

is achieved with all the three algorithms. These results are obtained by using 

random matrix as the measurement matrix. By using a more carefully designed 

measurement matrix, CS would give much better results. 
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