

Computer Engineering and Applications Vol. 1, No. 1, June 2012

ISSN: 2252-4274 (Print) 33

ISSN: 2252-5459 (Online)

Techniques for Component-Based Software Architecture

Optimization

Adil A abdeaiziz
1
, Wan Nasir

2

Department of Software Engineering

University Technology Malaysia
1
aasadil2@live.utm.my

2
adil_sudan@hotmail.com

ABSTRAKSI

Meskipun Component Base System (CBS) meningkatkan efisiensi pengembangan

dan mengurangi kebutuhan untuk dipertahankan, dan komponen kualitas yang lebih

baik dapat merusak produk yang baik jika komposisi tidak dikelola dengan tepat.

Dalam dunia nyata, seperti domain otomasi industri, probabilitas ini tidak dapat

diterima dan ukuran tambahan, waktu, upaya, dan biaya yang diperlukan untuk

menguranginya. Banyak pendekatan optimasi umum telah diusulkan dalam literatur

untuk mengelola komposisi sistem pada tahap awal pengembangan. Makalah ini

mengkaji pendekatan baru untuk mengoptimalkan arsitektur perangkat lunak. Hasil

dari penelitian ini akan bermanfaat untuk digunakan dalam mengembangkan

optimasi kerangka kerja yang efisien untuk arsitektur perangkat lunak dalam

penelitian yang sedang kami laksanakan.

Kata Kunci: Sistem Berbasis Komponen, pendekatan optimisasi, arsitektur

perangkat lunak.

ABSTRACT

Although Component-Based System (CBS) increases the efficiency of development

and reduces the need for maintenance, but even good quality components could fail

to compose good product if the composition is not managed appropriately. In real

world, such as industrial automation domain, this probability is unacceptable

because additional measures, time, efforts, and costs are required to minimize its

impacts. Many general optimization approaches have been proposed in literature to

manage the composition of system at early stage of development. This paper

investigates recent approach es used to optimize software architecture. The results of

this study are important since it will be used to develop an efficient optimization

framework to optimize software architecture in next step of our ongoing research.

Keywords: Component-Based System, optimization approach, software

architecture.

1. INTRODUCTION

In recent years, there have been increasing interests in using Component-Based

System Development (CBSD) approach, particularly COTS (commercial off the

shelf) components, to develop large complex applications. Both software consumers

and developers share the interest for the CBSD approach because of the clear

advantages. Some advantages are but not limited to: The efficiency of development

Computer Engineering and Applications Vol. 1, No. 1, June 2012

34 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

increased, the product becomes more reliable, need for maintenance is radically

decreased, the development time decreases, and the usability of the products

increases. Although it promises faster time-to-market and increased productivity [1],

many risks has been introduced when developing COTS-based systems such as

failure to satisfy the quality attributes. The use of good quality components to

develop system does not grantee to obtain system with the satisfied quality. Indeed,

bad quality components will not produce high quality product, and even good

quality components can damage a good product if the composition is not managed

appropriately. In real world, such as industrial automation domain, this probability is

unacceptable and additional measures, time, efforts, and costs are required to

minimize it. For example it been reported that a large Japanese car manufacture had

to recall 160,000 vehicles due to software failure [2]. Consequently, the failure to

satisfy the quality attribute such as reliability means a financial loss, increased

expenses of hardware, higher cost of software development, and harder than that, the

loss of relationships with consumers. Whenever, quality issues are addressed at

implementation or integration time, correction of problems impacts the cost,

schedule, and quality of the software. For example it been reported that a large

Japanese car manufacture had to recall 160,000 vehicles due to software failure [2].

Also, reports confirm that about 25 percent of software problems are related to

software architecture and hardware-configuration issues that can be detected very

early in the development cycle.

2. NEED FOR ARCHITECTURE OPTIMIZATION

When an architect starts building a new CBS application, he has many options to

do this task. Each probable solution is arranging from a mixture of distinctive

components. All those possible alternatives are called Design Options. The

combination that satisfied the performance requirements is the target of the architect.

However, design options are proportional with the degree of freedom. The degrees

of freedom are resulted due to the following [3]: Components, the selection of one

component from number of components instances with the same functionality but

different performance specifications; Resource Allocation, due to the fact that, the

selection of hardware does not impact the functional of components, its

configuration could be changed during search. Therefore, hardware environment are

modeled separately from the common assembly. In fact, manual or/and

mismanaging composition lead to undetected problems in the system. Researchers

have proposed Software Optimization Architecture Approaches to avoid such

problem since it provides early evaluation for architecture.

3. OPTIMIZATION APPROACHES

From literature, solutions can be classified into three groups of optimization

approach. Each approach aims to guide the search process towards the optimal

solution, these main approaches are: Anti-Patterns based solution, Rule-Based

Search, and Meta-heuristic search techniques. The approaches are discussed below.

Computer Engineering and Applications Vol. 1, No. 1, June 2012

ISSN: 2252-4274 (Print) 35

ISSN: 2252-5459 (Online)

4. ANTI-PATTERNS APPROACH

The approach aims to establish feedback generation process based on

performance anti-patterns [4] using XML format. It takes as input the XML

representation of the software system and gives in output a list of detected

performance anti-patterns. No grantees to apply it in complex system. Since, it

includes the problem (i.e. model properties that describe the anti-pattern) and the

solution (i.e. actions to take for eliminate the problem). However, human experience

in several steps is needed. For example, the detection of antipatterns in a subsystem

is a task whose complexity heavily depends on the structure of the subsystem and

the definition of the anti-patterns itself. Furthermore, there is no offer of new

architecture candidates.

4.1. Rule-Based Approach

Rule-based [5] approaches try to identify problems in the model (e.g. bottlenecks)

based on predefined rules and rules containing performance knowledge are applied

to the detected problems. Rule-based approaches focus on performance analysis

without considering other quality criteria. These approaches cannot find solutions

for which no rule exists, thus, they cannot cover all possible solutions and might

result in locally optimal.

 Metaheuristic-Based Approaches 2.4.

Meta-heuristics originated and inspired by natural process and creature’s

behavior to solve complex real world problems. Evolutionary Computing (EC)

methods and the Swarm Intelligence (SI) algorithms are the main common groups of

methods represent the field[6]. Meta-heuristics EC techniques such as Genetic

Algorithms (GAs) methods have proven its usefulness to solve the problem of

architecture optimization. Recently, SI techniques such as Particle Swarm

Optimization (PSO) [7], [8], [9] an alternative search technique, often performed

better than many EC techniques such as GAs when applied to various problems [10,

11]. EC need to handle the population movement; therefore, they are less fast in

discovering optimal solutions. Furthermore, EC algorithms may have a memory to

store previous status; this may help in minimizing the number of individuals close to

positions in candidate solutions that have been visited before, but it may also slow to

converge since successive generations may die out. In contrast, SI is easy to

symbolize the architecture alternatives as an optimization problem, and less number

of parameters required.

5. CONCLUSION

Architect needs to use optimization to avoid problem of quality dissatisfaction

cause due to the late evaluation of developed system. Metaheuristic approaches

provide efficient techniques to optimize software architecture. In contrast, other

approaches such as of rule-based and Anti-Pattern do not cover the design space and

no new candidates are suggested. Evolutionary and Intelligent swarm are

subdivision of metaheuristics. Both approached used to optimize software

architecture. However, the latter one has outperformed the former method.

Computer Engineering and Applications Vol. 1, No. 1, June 2012

36 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

Furthermore, SI algorithm is easier to manage. Based on this result we recommend

using SI algorithm to develop new optimization approach.

REFERENCES

[1]. Voas, J., COTS software: the economical choice? Software, IEEE, 1998. 15(2):

p. 16- 19

[2]. D Hoch, et al., The race to master automotive embedded systems

development. 2006, McKinsey Company, Automotive and assembly sector

business technology office: Germany.

[3]. Martens, A. and H. Koziolek, Automatic, Model-Based Software Performance

Improvement for Component-based Software Designs. Electronic Notes in

Theoretical Computer Science, 2009. 253(1): p. 77-93.

[4]. Cortellessa, V. and L. Frittella, A framework for automated generation of

architectural feedback from software performance analysis, in Proceedings of

the 4th European performance engineering conference on Formal methods and

stochastic models for performance evaluation. 2007, Springer-Verlag: Berlin,

Germany. p. 171-185.

[5]. Xu, J., Rule-based automatic software performance diagnosis and

improvement, in Proceedings of the 7th international workshop on Software

and performance. 2008, ACM: Princeton, NJ, USA. p. 1-12.

[6]. website. Swarm and Evolutionary Computation. 2011 [cited 2011 13-11-

2011]; Available from:

http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/Swa

rm%20and%20Evolutionary%20Computation_2.pdf.

[7]. Gudise, V.G. and G.K. Venayagamoorthy. Comparison of particle swarm

optimization and backpropagation as training algorithms for neural networks.

in Proceedings of the Swarm Intelligence Symposium. SIS '03. IEEE. 2003.

[8]. Boeringer, D.W. and D.H. Werner, Particle swarm optimization versus genetic

algorithms for phased array synthesis. Antennas and Propagation, IEEE

Transactions on, 2004. 52(3): p. 771-779.

[9]. Eberhart, R. and Y. Shi, Comparison between genetic algorithms and particle

swarm optimization Evolutionary Programming VII, V. Porto, et al., Editors.

1998, Springer Berlin / Heidelberg. p. 611-616.

[10]. Liang, J.J., et al., Comprehensive learning particle swarm optimizer for global

optimization of multimodal functions. IEEE Transactions on Evolutionary

Computation, 2006. 10(3): p. 281-295.

[11]. Qasem, S.N. and S.M. Shamsuddin, Radial basis function network based on

time variant multi-objective particle swarm optimization for medical diseases

diagnosis. Applied Soft Computing, 2011. 11(1): p. 1427-1438.

http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/Swarm%20and%20Evolutionary%20Computation_2.pdf
http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/Swarm%20and%20Evolutionary%20Computation_2.pdf

