
ISSN: 2252-4274 (Print) 1

ISSN: 2252-5459 (Online)

A Hybrid Approach for Scheduling based on Multi-criteria Decision

Method in Data Grid

N. Mansouri

Department of Computer Science, Shahid Bahonar University of Kerman, Postal Code 97175-569,

Kerman, Iran

Najme.mansouri@gmail.com

ABSTRACT

Grid computing environments have emerged following the demand of scientists to

have a very high computing power and storage capacity. One among the challenges

imposed in the use of these environments is the performance problem. To improve

performance, scheduling technique is used. Most existing scheduling strategies in

Grids only focus on one kind of Grid jobs which can be data-intensive or

computation-intensive. However, only considering one kind of jobs in scheduling

does not result in suitable scheduling in the viewpoint of all system, and sometimes

causes wasting of resources on the other side. To address the challenge of

simultaneously considering both kinds of jobs, a new Hybrid Job Scheduling (HJS)

strategy is proposed in this paper. At one hand, HJS algorithm considers both data

and computational resource availability of the network, and on the other hand,

considering the corresponding requirements of each job, it determines a value called

W to the job. Using the W value, the importance of two aspects (being data or

computation intensive) for each job is determined, and then the job is assigned to the

available resources. The simulation results with OptorSim show that HJS

outperforms comparing to the existing algorithms mentioned in literature as number

of jobs increases.

Keywords: Data Grid, Scheduling, Access pattern, Simulation.

1. INTRODUCTION

In recent years, applications such as bioinformatics, climate transition, and high

energy physics produce huge data files from simulations or experiments. Managing

this large data in a centralized way is ineffective due to extensive access latency and

load on the central server. In order to solve these kinds of problems, Grid

technologies have been presented. Data Grids aggregate a collection of distributed

resources placed in different parts of the world to enable scientists to share data and

resources. All jobs in such environment will compete for some resources and this is

possible to distribute the load disproportionately among the Grid sites. One of the

most important challenges in Grid is job scheduling problem. Indeed, determining

the optimal schedule for a Grid environment which can distribute the sent jobs to the

Grid resources to optimize a specify measure is a well-known NP-complete

problem. To overcome this difficulty, many heuristic strategies have been presented

to appropriately schedule jobs among resources [1-2]. None of these types of

scheduling strategies can be clearly claimed to propose optimal solution. Moreover,

current scheduling strategies [3-6] are immutable to changing schedules and behave

like static time-dependent Grid systems. These schedulers cannot consider the input

parameters such as network features and data location at runtime. The job scheduler

should take into consideration input constraints such as data location, data size, site

Najme Mansouri

A Hybrid Approach for Scheduling based on Multi-criteria Decision Method

2 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

availability, network features, computation power and various optimization

criterions in making scheduling decisions.

The Grid scheduling decisions are often made on the basis of jobs being either

data or computation intensive: in data intensive states jobs may be pushed to the data

and in computation intensive states data may be pulled to the jobs. This type of

scheduling, in which there is no consideration of network features, can lead to

performance reduction in a Grid environment and may result in large processing

queues and job execution delays due to site overloads. Furthermore, previous

strategies have been based on so-called greedy algorithms where a job is assigned to

a „best‟ resource without evaluating the global cost of this action. However, this can

lead to a skewing in the allocation of resources and can result in large queues,

reduced performance and throughput degradation for the other jobs.

 The nature of applications can also affect the result of the scheduling and

should be used during scheduling decision. Generally speaking, the applications can

be classified into two common classes, data-intensive and computation-intensive

applications. Data-intensive applications devote most of their operation time to

access data [7-9] however computation-intensive applications dedicate most of their

operation time to process on data [10]. In fact, almost no application belongs to one

of these two categories specifically; nevertheless it requires data/computational

resources proportionally to be run. In other words, most application is both data-

intensive and computation-intensive. However the proportion between being data

and computation intensive differs among applications. Focusing on only one of these

aspects causes important problems, since the other one is not negligible. At one

hand, evaluating only data-intensive aspect causes a waste of computational power;

on the other hand, evaluating only computation-intensive aspect leads to a waste of

network resources such as bandwidth. We propose a new Hybrid Job Scheduling

(HJS) strategy that addresses these problems. The HJS algorithm is a way to

simultaneously use data-intensive and computation-intensive dimensions of the job,

while taking into account the same characteristics of the available Grid environment.

The scheduler can make good selections by considering the changing state of the

network, the locality and the size of data and computational power. In other words,

the scheduler needs to schedule any sent job adaptively based on the present state of

the network as well as the job. The simulation results show that considerable

performance improvements can be gained by adopting the HJS scheduling approach.

 The rest of the paper is organized as follows: Section 2 introduces related

work of this study. Section 3 presents the proposed job scheduling algorithms. We

show and analyze the simulation results in section 4. Finally, section 5 concludes the

paper and suggests some directions for future work.

2. RELATED WORK

Generally, job scheduling in Grid has been studied from the perspective of

computational Grid. In Data Grid, effective scheduling policy should consider both

computational and data storage resources. Foster et al. [11-12] proposed six distinct

replica strategies for a multi-tier data: No Replica, Best Client, Cascading

Replication, Plain Caching, Caching plus Cascading Replica and Fast Spread. They

also introduced three types of localities, namely:

 Temporal locality: The files accessed recently are much possible to be

requested again shortly.

 Geographical locality: The files accessed recently by a client are probably

to be requested by adjacent clients, too.

ISSN: 2252-4274 (Print) 3

ISSN: 2252-5459 (Online)

 Spatial locality: The related files to recently accessed file are likely to be

requested in the near future.

 They evaluated these strategies with different data patterns: access pattern

with no locality, data access with a small degree of temporal locality and finally data

access with a small degree of temporal and geographical locality. The results of

simulations indicate that different access pattern needs different replica strategies.

Cascading and Fast Spread performed the best in the simulations. They have

presented in another work [12] the problem of scheduling job and data movement

operations in a distributed “Data Grid” environment to identify both general

principles and specific strategy that can be used to improve system utilization and/or

response times. They have also proposed framework with four different job

scheduling algorithms, as follows: (1) JobRadom: select a site randomly, (2)

JobLeastLoaded: select a site where has the least number of jobs waiting to run, (3)

JobDataPresent: select a site where has requested data, and (4) JobLocally: run jobs

locally. These job scheduling strategies are combined with three various replication

algorithms: (1) DataDoNothing: there is no replication and data may be fetched from

a remote site for a particular job, (2) DataRandom: when popularity of the file

exceeds a threshold, a replica is created at a random site, (3) DataLeastLoad: when

the threshold for a file exceeds, a replica is placed at the least loaded site. They can

enhance performance by scheduling jobs where data is located and using a

replication policy that periodically creates new replicas of popular datasets at each

site. The results also show that while it is important to consider the impact of

replication on the scheduling strategy, it is not always necessary to couple data

movement and computation scheduling.

 Chang et al. [13] developed the Hierarchical Cluster Scheduling algorithm

(HCS) and the Hierarchical Replication Strategy (HRS) to enhance the data access

efficiencies in a Grid. HCS considers the locations of required data, the access cost

and the job queue length of a computing node. It also takes into account hierarchical

cluster Grid structure and all of data replicas owned by a cluster. The HRS

replication algorithm uses the concept of “network locality” as a Bandwidth

Hierarchy based Replication (BHR) strategy. HCS scheduling along with HRS

replica strategy improves data access time and the amount of inter-cluster

communications in comparison to others scheduling algorithms and replication

strategies.

 A replication algorithm for a 3-level hierarchy structure and a scheduling

algorithm are proposed. Horri et al. [14] considered a hierarchical network structure

that has three levels. In their proposed replication method among the candidate

replicas they select the one that has the highest bandwidth to the requested file.

Similarly, it uses the same technique for file deletion. This leads to a better

performance comparing with LRU (Least Recently Used) method. For efficient

scheduling, 3-level scheduling (3LS) algorithm selects the best region, LAN and site

respectively. Best region (LAN, site) is a region (LAN, site) with most of the

requested files. This will significantly reduce total transfer time, and consequently

the network traffic.

 Mansouri et al. [15] proposed a new job scheduling algorithm, called Combine

Scheduling Strategy (CSS). CSS first selects the appropriate region, next selects the

appropriate LAN in that region (i.e. available maximum requested files) and finally

selects the appropriate site in that LAN by considering number of jobs waiting in the

queue, location of required data and the computing capacity of sites. Simulation

Najme Mansouri

A Hybrid Approach for Scheduling based on Multi-criteria Decision Method

4 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

results show that CSS takes less job execution time than other strategies especially

when number of jobs or size of the files or both increases.

 Kumar et al. [16] showed why network characteristics, data locations of input

files, and disk read speed of data sources must be taken into account when

scheduling data intensive jobs, not only to minimize file staging (data transfer) time

over network, but also to reduce turnaround and waiting time of jobs in Grid

environment. They presented Network and Data Location Aware Scheduling

(NDAS) algorithm. The presented algorithm is evaluated by improving the existing

GridWay MetaScheduler with the new scheduling algorithm. The excremental

results regarding the influence of the network characteristics, data locations, disk

latency of data source, and jobs types variability are presented, showing that the

enhanced GridWay can perform better job scheduling resulting to lower data transfer

and turnaround time.

 Although some previous works have done that, such as providing shorter

mean job time and higher network usage, they did not consider both types of jobs

simultaneously. Therefore, HJS algorithm is proposed to improve this weakness.

3. HYBRID JOB SCHEDULING (HJS) ALGORITHM

To select a best site, a parallel strategy is proposed as shown in Fig 1.

3.1 TRANSFER TIME

Let Bji is the bandwidth from site Sj to the site that fi resides. PropagationDelayij

is propagation delay / network latency (in seconds) from site Sj to site Si. Then

transfer time for fi (TransferTimefi) is obtained by

 * 8 /
fi ij ji

TransferTime PropagationDelay fi B (1)

FIGURE 1. A parallel execution flow of master and slave.

 Let Jx = {f1, f2, .., fm} be the m required files for job x. Now estimated file

staging (data transfer) time of job x when scheduled on site Sj (JobTimex,j) is given:

1

,JobTime Min(TransferTime)
m

i

i

x j

 (2)

 Replica selection is crucial to data intensive scheduling; it depends on the

network characteristics and an optimized replica selection leads to an optimized data

intensive scheduling. These considerations not only improved the execution times of

the jobs but also reduced the queue times of the jobs. So, if several sites have the

replica of fi, it selects one that has maximum Score.

ISSN: 2252-4274 (Print) 5

ISSN: 2252-5459 (Online)

1 2 3

BW CPU IO
Score P w P w P w (3)

 Where P
BW

 represents the percentage of bandwidth available from the selected

site to the site that requested file resides, P
CPU

 is the percentage CPU idle states of

site that requested file resides, and P
IO

 is the percentage of memory free space of site

that requested file resides.

1 2 3
1w w w

 (4)

 These weights can be set by the administrator of the Data Grid organization.

According to different attributes of storage systems in data Grid node.

Let k is the number of jobs waiting in queue of site Sj. The value of TotalTimej for

site Sj is calculated by

1

,TotalTime JobTime

k

x

j x j

 (5)

3.2 COMPUTATIONAL POWER

The processing power provided by resources (required for jobs) is described in

the form of MIPS (MI). Therefore, the total time required for the job Jx to be

completed in the resource Sj can be calculated by Eq. (6).

x

j

CP
ComputingScore

CP

 (6)

 Where CPj is the computational power provided by the computational

resource Cj and CPx is the computational power required by the job Jx. The

ComputingScore is used as a score for fitness of the resource Cj for the job Jx. The

available information about each job send to the environment is stored in two areas.

The first one contains information about needed data files, so we can obtain the total

size of data files, and the second one gives information about the total computational

power needed by the job in terms of MI. The main goal at this stage is to calculate

the proportion of being data-intensive to being computation-intensive, while

considering the availability of resources in each area. Hence, the strategy needs to

jointly consider both required and provided resources, and then estimate a value for

scheduler to show how much the submitted job is generally data/computation

intensive in the context of available grid environment.

 To achieve this, the strategy first determines the expected value of the

provided computational power using Eq. (7).

1

N

i

i

ComputationPower

N

Cp

 (7)

 Where, N is the number of sites. To find the corresponding value for data-

intensive aspect of the submitted job, the strategy needs to apply an equivalent mean

operation on network links. Eq. (5) obtains this value by averaging on time needed

to collect a specific set of data files for each site.

1

N

i

i
TotalTime

TotalTransferTime

N

 (8)

Najme Mansouri

A Hybrid Approach for Scheduling based on Multi-criteria Decision Method

6 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

3.3 FINAL COST

Finally, the factor W is determined by using Eq. (9) and Eq. (10) for a given job i.

i
CP

CC
ComputationPower

 (9)

i
TotalTime

TT
TotalTransferTime

CC
W

CC TT

 (10)

 When the HJS strategy is executed for a submitted job, both TotalTime and

ComputingScore are determined for each site. Combining these two scores by

affecting the factor W gives the FinalCost for all sites (Equation 11).

(,) (1)FinalCost J S w TotalTime w ComputingScore (11)

 The HJS strategy chooses the site with minimum FinalCost and assigns the

job to it.

4 EXPERIMENTS

In this section, network configuration and the simulation results are described.

4.1 CONFIGURATION

We have implemented the proposed strategy using OptorSim, a simulator for

Data Grids. OptorSim was presented by the European Data Grid (EDG) project [17].

The study of our scheduling algorithm is carried out using a model of the EU Data

Grid Testbed [17] sites and their associated network geometry as shown in Fig. 2.

Initially all jobs are placed on CERN (European Organization for Nuclear Research)

storage element. CERN contains original copy of some data sample files that cannot

be removed. Since all files are available in Site 0, so any job sent to this site does not

require any file transfer. Therefore in our simulation we only consider all CE sites

except site 0. Each file is set to be 1 GB. To record file transfer time and path, we

changed OptorSim code. A job will typically request a set of logical filename(s) for

data access. The order in which the files are requested is specified by the access

pattern. We considered three different access patterns: sequential (files are accessed

in the order stated in the job configuration file, Gaussian random walk (files are

accessed using a Gaussian distribution), and Random Zipf access (given by Pi = K/

i
s
 , where Pi is the frequency of the ith ranked item, K is the popularity of the most

frequently accessed data item and S determines the shape of the distribution).

4.2 SIMULATION RESULTS AND DISCUSSION

Eight scheduling strategies have been considered, as follows:

 The Random scheduler that schedules a job randomly.

ISSN: 2252-4274 (Print) 7

ISSN: 2252-5459 (Online)

FIGURE 2. The gird topology of EDG.

 The Shortest Queue scheduler that selects computing element that has the

least number of jobs waiting in the queue.

 The Access Cost scheduler that assigns the job to computing element

where the file has the lowest access cost (cost to get all unavailable

requested data files needed for executing job).

 The Queue Access Cost scheduler that selects computing element with the

smallest sum of the access cost for the job and the access costs for all of

the jobs in the queue.

 Hierarchical Cluster Scheduling (HCS) takes into account hierarchical

cluster Grid structure and all of data replicas owned by a cluster. It

schedules jobs to certain specific sites and specific cluster according to

inter-cluster communication costs.

 3-level Scheduling (3LS) determines most appropriate region, LAN and

site respectively. An appropriate region (LAN, site) is a region that holds

most of the requested files (from size point of view). i.e. most of the

requested files are available in that region.

 Network and Data location Aware Scheduling (NDAS) takes into account

network characteristics, data locations of input files, and disk read speed

of data sources in scheduling decision.

 The Combine Scheduling Strategy (CSS) considers the number of jobs

waiting in queue, the location of required data for the job and the

computing capacity of sites.

Figure 3 depicts the Mean Job Time for different job scheduling algorithms with

various access patterns. The mean job execution time is defined as the total time to

run all the jobs divided by the number of jobs finished. The total time includes the

time that elapses from when a job enters the queue in a site to await execution until

the time when the job completes its processing and leaves the site. In Random

scheduling the mean job execution time obviously increases because it doesn‟t

consider any factors.

Najme Mansouri

A Hybrid Approach for Scheduling based on Multi-criteria Decision Method

8 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

FIGURE 3. Mean job Time for different access patterns.

In Shortest Job Queue Scheduling each CE receives approximately the same

number of jobs. If CE‟s have low network bandwidth, then file transfer time will be

high and overall job execution time will increase. Access Cost Scheduling selects a

CE based on its access cost. CE‟s with lower access cost may receive large number

of jobs to execute. So, overall performance is decreased. The Queue Access Cost

considers not only shortest job queue but also access cost. Therefore, the Queue

Access Cost decreases total job execution time. The mean job time is about 8%

faster using HCS than using Queue Access Cost because HCS uses a hierarchical

tree to schedule a job and minimize the overhead of searching for the suitable site.

The 3LS first selects the appropriate region (i.e. available maximum requested files),

next selects the appropriate LAN in that region and finally selects the appropriate

site in that LAN, therefore job execution time decreases since it has minimum data

transfer time. The mean job time is about 12% faster using CSS than using HCS

ISSN: 2252-4274 (Print) 9

ISSN: 2252-5459 (Online)

because it schedules jobs close to the data whilst ensuring sites with high network

connectivity are not overloaded and sites with poor connectivity are not left idle. It

also takes into account hierarchical Grid structure and considers computational

capability. The mean job time of HJS is lower about 11% compared to the CSS

algorithm. The reason is that it takes into account data, processing power and

network characteristics when making scheduling decisions across different sites.

 Figure 4 shows the queue time for nine scheduling strategies with different

number of jobs. We changed the number of jobs for two important reasons: to

monitor how the queue size increases over time and in which proportion the

scheduler submits the jobs (that is whether the jobs are sent to some particular site or

to a number of CPUs at various locations depending on the queue size and the

computing capability). It presents that queue time is almost proportional to

execution time because if the job is executing and taking more time on the

processor, the waiting time of the new job will also increase correspondingly since it

will waste more time in the queue. Although the execution time does not comprise

queue times, a higher number of jobs executing at a site can influence the queue

time. Moreover, increasing the number of jobs in the queue can affect the overall job

completion times (i.e. the scheduling time, queuing time and execution time) of the

new jobs. The queue time of the schedulers is very important in the Grid

environment and it takes a large ratio of the job‟s overall time. Sometimes this is

greater than the execution time if the resources are rare compared to the job

frequency. In experimental setup of this work, we took only a single job queue and

we considered that all jobs have the same priority. Multi-queue and multi-priority

job scenarios will be discussed later in future work. Figure 6 indicates that the queue

grows with an increasing number of jobs and that the number of jobs waiting for the

allocation of the processors for running also increases. From the figure it is clear that

the HJS scheduling strategy remarkably decreases the queue time of the jobs. The

main reason is only those sites were selected for job placement which had fewest

jobs in the queue and which were likely to quickly run the jobs once scheduled on

that site, were selected for job placement.

Figure 5 indicates execution times for various scheduling strategies. We see from

the results obtained in Fig. 4 and 5 that both queue and execution times follow very

similar trends. This is mainly due to the fact that HJS preferentially chose those sites

for job execution which could execute jobs fast.

FIGURE 4. Queue time versus number of jobs.

Najme Mansouri

A Hybrid Approach for Scheduling based on Multi-criteria Decision Method

10 ISSN: 2252-4274 (Print)

 ISSN: 2252-5459 (Online)

FIGURE 5. Execution time versus number of jobs.

5. CONCLUSION

Considering various requirements of jobs during scheduling decision within Grid

environments is the main concern of this paper. The scheduler can make

“intelligent” decisions by taking into account the changing state of the network, the

locality and the size of the data and the computational power. To achieve a more

appropriate scheduling in Grids, an algorithm named HJS is proposed in this paper

to discuss the problem of simultaneously considering data-intensive and

computation-intensive dimensions of the jobs. The HJS strategy takes network

characteristics as a primary class criterion in the scheduling decision, along with

computations and data. It was also deduced that a combination of data transfer cost,

network cost and computation cost can considerably optimize the Grid scheduling

and execution process which was the key message of the HJS scheduling approach.

A grid simulator (i.e. OptorSim) was utilized to evaluate the HJS algorithm. The

simulation results showed that the new algorithm enhanced the performance of the

grid environment and thus, decreased the job‟s average total time. From a simulation

perspective, it will be interesting to evaluate the results in more complex networks.

Another interesting issue, is modeling a real grid scenario, with the existing

resources and real job traces.

REFERENCES

[1] S. Kardani-Moghadam, F. Khodadadi, R. Entezari-Maleki, A. Movaghar, “A

hybrid genetic algorithm and variable neighborhood search for task scheduling

problem in grid environment,” Procedia Engineering, vol. 29, pp. 3808-3814,

2012.

[2] B. Radha, V. Sumathy, “Enhancement of grid scheduling using dynamic error

detection and fault tolerance,” International Journal of Computer

Applications, vol. 31(7), 2011.

[3] L.R. Anikode, B. Tang, “Integrating scheduling and replication in data grids

with performance guarantee,” in: Global Telecommunications Conference, pp.

1-6, 2011.

[4] J. Basney, M. Livny, P. Mazzanti, “Utilizing widely distributed computational

resources efficiently with execution domains,” Comput Phys Commun, vol.

140(1), pp. 246-252, 2001.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132211

ISSN: 2252-4274 (Print) 11

ISSN: 2252-5459 (Online)

[5] J. Zhang, B. Lee, X. Tang, C. Yeo, “Improving job scheduling performance

with parallel access to replicas in data grid environment,” J Supercomput, vol.

56, pp. 245-269, 2011.

[6] G. Falzon, M. Li, “Enhancing list scheduling heuristics for dependent job

scheduling in grid computing environments,” J Supercomput, vol. 59, pp. 104-

130, 2012.

[7] K. Li, Z. Tong, D. Liu, T. Tesfazghi, X. Liao, “PTS-PGATS based approach

for data-intensive scheduling in data grids,” Frontiers of Computer Science,

vol. 5(4), pp. 513-525, 2011.

[8] N. Mansouri, “A Threshold-based Dynamic Data Replication and Parallel Job

Scheduling Strategy to Enhance Data Grid,” Cluster Comput, in press.

[9] F. Xhafa, A. Abraham, “Computational models and heuristic methods for grid

scheduling problems,” Future Gener Comp Sy, vol. 26, pp. 608-621, 2010.

[10] F. Xhafa, A. Abraham, “Computational models and heuristic methods for grid

scheduling problems,” Future Gener Comp Sy, vol. 26, pp. 608-621, 2010.

[11] I. Foster, K. Ranganathan, “Design and evaluation of dynamic replication

strategies for high performance data grids,” in: Proceedings of International

Conference on Computing in High Energy and Nuclear Physics, 2001.

[12] I. Foster, K. Ranganathan, “Identifying dynamic replication strategies for high

performance data grids,” in: Proceedings of 3rd IEEE/ACM International

Workshop on Grid Computing, pp. 75–86, 2002.

[13] R. Chang, J. Chang, S. Lin, “Job scheduling and data replication on data

grids,” Future Gener Comp Sy, vol. 23, pp. 846-860, 2007.

[14] A. Horri, R. Sepahvand, G.H. Dastghaibyfard, “A hierarchical scheduling and

replication strategy,” International Journal of Computer Science and Network

Security, vol. 8, 2008.

[15] N. Mansouri, G.H. Dastghaibyfard, E. Mansouri, “Combination of data

replication and scheduling algorithm for improving data availability in Data

Grids,” J Netw Comput Appl, vol. 36, pp. 711-722, 2013.

[16] S. Kumar, N. Kumar, “Network and data location aware job scheduling in

grid: improvement to GridWay meta scheduler,” International Journal of Grid

and Distributed Computing, vol. 5(1), 2012.

[17] D.G. Cameron, A.P. Millar, C.C. Nicholson, R. Carvajal-Schiaffino, F. Zini,

K. Stockinger, “Optorsim: a simulation tool for scheduling and replica

optimization in data grids,” in: International conference for computing in high

energy and nuclear physics (CHEP‟04), 2004.

http://www.springer.com/computer/journal/11704

