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ABSTRACT 

It is well known that, a recursive relation for the sequence  is an 

equation that relates  to certain of its preceding terms . Initial 

conditions for the sequence  are explicitly given values for a finite 

number of the terms of the sequence. The recurrence relation is useful in certain 

counting problems like Fibonacci numbers, Lucas numbers, balancing numbers, 

Lucas-balancing numbers etc. In this study, we use the recurrence relations for both 

balancing and Lucas-balancing numbers and examine their application to 

cryptography. 
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1. INTRODUCTION 

 

     Cryptography is the study of methods of keeping communication secret and 

secure between a sender and a recipient in the presence of malevolent third parties. 

Security can only be as strong as the weakest link. In this world of Cryptography, it 

is now well established, that the weakest link lies in the implementation of 

cryptographic algorithms. The technological advancement in today’s world have 

made the cryptographic algorithms more prone to attacks. Multi-level ciphering can 

avoid all sorts of attack. 

In mathematics, a Cryptosystem is a five tuple  where,  is a finite 

set of possible plaintext  is a finite set of possible cipher texts,  is a finite set of 

possible keys [1]. For each , there is an encryption mapping  and a 

corresponding decryption mapping   defined by , where 

 and  where  and and for every plaintext elements 

. 

      In this paper, the objective is to develop new cryptographic schemes using 

recurrence relations and recurrence matrices. Many authors have studied the 
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application of Fibonacci numbers and their related sequences in cryptography. In 

[2], Stakhov et.al. introduced a different kind of cryptography based on the golden 

ratio which is popularly known as golden cryptography. Luma et. al. have found a 

very interesting relationship between Fibonacci  and Lucas numbers and applied it to 

symmetric cryptosystem [3]. The purpose of this paper is to study the possible 

application of balancing numbers and their related sequences in cryptography and 

serve as an alternating to the Fibonacci cryptography. 

 

2. DEVELOPMENT OF CIPHER USING RECURRENCE MATRIX 

 
        It is well known that, a recursive relation for the sequence  is an 

equation that relates  to certain of its preceding terms . Initial 

conditions for the sequence  are explicitly given values for a finite 

number of the terms of the sequence. The recurrence relation is useful in certain 

counting problems like Fibonacci numbers, Lucas numbers, balancing numbers, 

Lucas-balancing numbers etc. In this study, we use the recurrence relations for both 

balancing and Lucas-balancing numbers and examine their application to 

cryptography. 

     Balancing numbers  and the balancers  are solutions of the Diophantine 

equation   [4]. It is well 

known that, the recurrence relation for balancing numbers is     

      

                                                                                   (1)      

                                              

where  is the  balancing number with  Companion to 

balancing numbers is the sequence of Lucas-balancing numbers  defined by 

+1 and their recurrence relation is same as that of balancing numbers, that 

is 

                                                                                    (2) 

                                                          

with  [5]. Liptai [6], showed that the only balancing number in 

the sequence of Fibonacci numbers is 1. In [7] and [8], Ray obtained nice product 

formulas for both balancing and Lucas-balancing numbers. Panda and Ray [9] 

linked balancing numbers with Pell and associated Pell numbers and shown that 

balancing numbers are indeed the product of Pell and associated Pell numbers. 

Many interesting properties for balancing numbers and their related sequences are 

available in the literature. One can go through [4–20].  

2.1. Balancing and Lucas-balancing matrices 
 

In [10], Ray has introduced balancing -matrix of order  whose entries are nothing 

but the first three balancing numbers  and , that is  

                                                                                                         (3)                  
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He also proved that for all  integers , the power of this matrix is  

                                                                                             (4) 

where  is the  balancing number [10]. Without loss of generality, we present 

the balancing matrix  in a different way by interchanging the main diagonal 

elements as follows:  

                                                                                                        (5) 

The general form of this balancing matrix is given by        

                                                                                (6)                                

We now extend the balancing matrix  to a  matrix of the form 

                                                   ,                                 

which is so formed that its determinant is invariant without loss of generality to the 

Cassini formula   for balancing numbers. Similarly, extending it 

to   order, we obtain  

                                                  

The same logic can be used to extend  any order square matrix. Notice that, the usual 

product of  and its inverse  gives the 

identity matrix . Therefore generalization of this result yields      

                                   

for all integers n . 

The Lucas-balancing matrix whose entries are the first three Lucas-balancing 

numbers  and  can be similarly defined as follows:  
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                                                                                                        (7)                                                     

                                                                      

The general form of this Lucas-balancing matrix is given by  

                                                         (8)                                           

 

where  is the  Lucas-balancing number. The extension of  Lucas-balancing 

matrix  can be similarly obtaind as 

                                             and so on.  

We also observe that,     for all integers n .                                                   

 

2.2. Application of balancing and Lucas-balancing matrices to cryptography 
 

In this section, we examine the application of recurrence relations to cryptography 

with a new dimensionality in the matrix. Let the initial message be a digital signal 

which is a sequence of separate real numbers  We choose the 

first nine readings and form a  matrix of the form  which is 

to be considered as a plain text matrix. There can be  permutations to form the 

matrix  Let  be the choice of  permutation. We choose the direct matrix as 

enciphering matrix, the inverse matrix as deciphering matrix and the variable  as 

cryptographic key. In general, the key  consists of the permutation , the variable 

 and the type of recursion used is  that is, . Here  denote the 

cipher text matrix. 

3. PROPOSED ALGORITHM 

3.1. Encryption      

Step 1: Let the plain text A be a square matrix of order . Let  be the 

choice of  permutation. 
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Step 2: Define recurrence relation  and recurrence matrix . Choose the 

cryptographic key . 

Step 3: Define the cipher text.  [Cipher text is equal to the plain text 

matrix ] 

 Step 4:  Compute the cipher text and send it to the receiver. 

The above steps can be written in a compact form as follows: 

        

                

              

         

             

               

3.1. Decryption      

On receiving the secret key, cipher text and recurrence matrix decrypt the message 

using multiplicative inverse of the recurrence matrix and the secret key, to get the 

original information. The following is the algorithm for decryption 

 

         

                      

                    

         

                   

                     

4. EFFICACY OF THE PROPOSED ALGORITHM 
 

 4.1. Mathematical work 

 

Algorithm proposed is a simple application of using recurrence matrix. It is very 

difficult to break the cipher text without proper key and choice of permutation used. 
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 4.2. Strength of the key 

 

It is very difficult to guess the secret key even if the recurrence relation is known. 

 

 

 4.3. Encryption and Decryption Time calculation 

 

The encryption consists in calculation of the nine elements of the  which 

include three multiplications and two additions. If   is the time required for each 

multiplication and   is the time required for addition, then total encryption time is 

given as  

                                         

 Similarly, the total decryption time is given by 

                                                                                             

Hence, the time taken for encryption and decryption is less. So this method as an 

enhanced cryptography can prove to be a fast method for digital signals. 

 4.4. Security analysis 

 

Extraction of the original information is difficult due to the matrix multiplication, 

choice of permutation, recurrence relation and secret key. Brute force attack on key 

is also difficult due to the increase in secret key size. 

 

 

5.  AN EXAMPLE TO EXPLAIN THE WHOLE APPLICATION 

Example 5.1  Let the plaintext to be transmitted be   Choosing 

 and the types of recursion as balancing numbers   The 

initial step to form the ciphertext matrix  as follows:  

                             

                                                         

The second step is to form enciphering matrix  from  with the inverse matrix 

 as follows:  
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If the type of recursion used is Lucas-balancing for which  then 

the ciphertext matrix  be  

                            

                                                                                

 and the enciphering matrix   will be  

                                

                                                                                    

6. CONCLUSION 
 

In the present study, two types of recurrences namely balancing and Lucas-

balancing are discussed but in general can be extended to any recurrence relation. 

One can use any algorithm which are used in asymmetric cryptosystem to transmit 

the key. As compared to Fibonacci numbers, balancing and Lucas-balancing are 

large and therefore more secured. Also, the level of security is high since it involves 

three parameters such as permutation, the power of the matrix and type of recurrence 

used. The cryptographic protection of digital signals can be improved by multiple 

encryption and decryption algorithms. Also, with the increase of the size of the 

matrix, more information can be sent securely at a time. 
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