[1] I. N. Figueiredo et al., “Automated retina identification based on multiscale elastic registration,” Comput. Biol. Med., vol. 79, pp. 130–143, 2016.
[2] R. Vega, G. Sanchez-Ante, L. E. Falcon-Morales, H. Sossa, and E. Guevara, “Retinal vessel extraction using Lattice Neural Networks with dendritic processing,” Comput. Biol. Med., vol. 58, pp. 20–30, 2015.
[3] D. Zhou and H. Zhou, “Minimisation of local within-class variance for image segmentation,” IET Image Process., vol. 10, no. 2, pp. 608–615, 2016.
[4] X. Zheng, H. Ye, and Y. Tang, “Image bi-level thresholding based on gray level-local variance histogram,” Entropy, vol. 19, no. 5, pp. 1–8, 2017.
[5] L. Xiong, H. Li, and L. Xu, “An enhancement method for color retinal images based on image formation model,” Comput. Methods Programs Biomed., vol.
143, pp. 137–150, 2017.
[6] B. Al-Bander, W. Al-Nuaimy, B. M. Williams, and Y. Zheng, “Multiscale
sequential convolutional neural networks for simultaneous detection of fovea and optic disc,” Biomed. Signal Process. Control, vol. 40, pp. 91–101, 2018.
[7] F. M. Villalobos-Castaldi, E. M. Felipe-Riverón, and L. P. Sánchez-Fernández, “A fast, efficient and automated method to extract vessels from fundus images,” J. Vis., vol. 13, no. 3, pp. 263–270, 2010.
[8] Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, and T. Wang, “A cross-modality learning approach for vessel segmentation in retinal images,” IEEE Trans. Med. Imaging, vol. 35, no. 1, pp. 109–118, 2016.
[9] Q. Li, J. You, and D. Zhang, “Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses,” Expert Syst. Appl., vol. 39, no. 9, pp. 7600–7610, 2012.
[10] I. Lázár and A. Hajdu, "Segmentation of retinal vessels by means of directional response vector similarity and region growing,” Comput. Biol. Med., vol. 66, pp. 209–221, 2015.
[11] B. Yin et al., “Vessel extraction from non-fluorescein fundus images using orientation-aware detector,” Med. Image Anal., vol. 26, no. 1, pp. 232–242, 2015.
[12] S. Manikandan, K. Ramar, M. Willjuice Iruthayarajan, and K. G. Srinivasagan, “Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm,” Meas. J. Int. Meas. Confed., vol. 47, no. 1, pp. 558–
568, 2014.
[13] S. Kotte, P. Rajesh Kumar, and S. K. Injeti, “An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm,” Ain Shams Eng. J., 2015.
[14] M. H. Mozaffari and W.-S. Lee, “Convergent heterogeneous particle swarm optimisation algorithm for multilevel image thresholding segmentation,” IET Image Process., vol. 11, no. 8, pp. 605–619, 2017.
[15] D. Mishra, I. Bose, U. Chandra De, and B. Pradhan, “A multilevel image
thresholding using particle swarm optimization,” Int. J. Eng. Technol., vol. 6, no. 2, pp. 1204–1211, 2014.
[16] Y. Liu, C. Mu, W. Kou, and J. Liu, “Modified particle swarm
optimizationbased multilevel thresholding for image segmentation,” Soft Comput., vol. 19, no. 5, pp. 1311–1327, 2015.
[17] H. Maryam, A. Mustapha, and J. Younes, “A multilevel thresholding method for image segmentation based on multiobjective particle swarm optimization,” IEEE, pp. 0–5, 2017.
[18] K. S. Sreejini and V. K. Govindan, “Improved multiscale matched filter for
retina vessel segmentation using PSO algorithm,” Egypt. Informatics J., vol.
16, no. 3, pp. 253–260, 2015.
[19] L. Câmara Neto, G. L. B. Ramalho, J. F. S. Rocha Neto, R. M. S. Veras, and F. N. S. Medeiros, “An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images,” Expert Syst. Appl., vol. 78, pp. 182–192, 2017.
[20] Y. Gavet et al., “Dissimilarity criteria and their comparison for quantitative evaluation of image segmentation : application to human retina vessels,” Mach. Vis. Appl., vol. 25, no. 8, pp. 1953–1966, 2014.
[21] G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov, “Trainable COSFIRE filters for vessel delineation with application to retinal images,” Med. Image Anal., vol. 19, no. 1, pp. 46–57, 2015.
[22] M. Hassan, M. Amin, I. Murtaza, A. Khan, and A. Chaudhry, “Robust Hidden
Markov Model based intelligent blood vessel detection of fundus images,”
Comput. Methods Programs Biomed., vol. 151, pp. 193–201, 2017.
[23] D. Pandey, X. Yin, H. Wang, and Y. Zhang, “Accurate vessel segmentation
using maximum entropy incorporating line detection and phase-preserving
denoising,” Comput. Vis. Image Underst., vol. 155, pp. 162–172, 2017.
[24] M. E. Gegúndez-Arias, A. Aquino, J. M. Bravo, and D. Marín, “A function for quality evaluation of retinal vessel segmentations,” IEEE Trans. Med. Imaging, vol. 31, no. 2, pp. 231–9, 2012.
[25] B. Zhang, L. Zhang, L. Zhang, and F. Karray, “Retinal vessel extraction by matched filter with first-order derivative of Gaussian,” Comput. Biol. Med., vol. 40, no. 4, pp. 438–445, 2010.
[26] U. T. V. Nguyen, A. Bhuiyan, L. A. F. Park, and K. Ramamohanarao, “An
effective retinal blood vessel segmentation method using multi-scale line detection,” Pattern Recognit., vol. 46, no. 3, pp. 703–715, 2013.