Abstract

Medical Informatics to support health services in Indonesia is proposed in this paper. The focuses of paper to the analysis of Big Data for health care purposes with the aim of improving and developing clinical decision support systems (CDSS) or assessing medical data both for quality assurance and accessibility of health services. Electronic health records (EHR) are very rich in medical data sourced from patient. All the data can be aggregated to produce information, which includes medical history details such as, diagnostic tests, medicines and treatment plans, immunization records, allergies, radiological images, multivariate sensors device, laboratories, and test results. All the information will provide a valuable understanding of disease management system. In Indonesia country, with many rural areas with limited doctor it is an important case to investigate. Data mining about large-scale individuals and populations through EHRs can be combined with mobile networks and social media to inform about health and public policy. To support this research, many researchers have been applied the Deep Learning (DL) approach in data-mining problems related to health informatics. However, in practice, the use of DL is still questionable due to achieve optimal performance, relatively large data and resources are needed, given there are other learning algorithms that are relatively fast but produce close performance with fewer resources and parameterization, and have a better interpretability. In this paper, the advantage of Deep Learning to design medical informatics is described, due to such an approach is needed to make a good CDSS of health services.