[1]R. R. Shamshiri,C. Weltzien, I. A. Hameed, I. J. Yule, T. E. Grift, S. K. Balasundram, L. Pitonakova, D. Ahmad, and G. Chowdhary, "Research and Development inAgricultural Robotics: A Perspective of Digital Farming," Int. J. Agric & Biol Eng., Vol. 11, No. 4, pp. 1-14, 2018.
[2]M. Stoelen, K. Krzysztof, V. F. Tejada, N. Heiberg, C. Balaguer, and A. Korsaeth, "Low-Cost Robotics for Horticulture: A Case Study on Automated Sugar Pea Harvesting," 10th European Conference on Precision Agriculture (ECPA), 2015. DOI: 10.3920/978-90-8686-814-8_34.
[3]T. Duckett, S. Pearson, S. Blackmore, and B. Grieve, "Agriculture Robotics: The Future of Robotic Agriculture," UK-RAS Network Robotics & Autonomous System, 2018. ISSN 2391-4414.
[4]P. Kumar and G. Ashok, " Design and Fabrication of Smart Seed Sowing Robot," Materials Today: Proceedings, Vol. 39, Part 1, pp. 354-358, 2021, https://doi.org/10.1016/j.matpr.2020.07.432.
[5]S. Cubero, E. Marco-Noales, N. Aleixos, S. Barbé, and J. Blasco, "RobHortic: A Field Robot to Detect Pests and Diseases in Horticultural Crops by Proximal Sensing," Agriculture 2020, Vol. 10, No. 7, 276, 2020. https://doi.org/10.3390/agriculture10070276.
[6]A. S. A. Ghafar, S. S. H. Hajjaj, K. R. Gsangaya, M. T. H. Sultan, M. F. Mail, and L. S. Hua, "Design and Development of a Robot for Spraying Fertilizers and Pesticides for Agriculture, Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.03.174.
[7]R. Barth, J. Hemming, and E. J. van Henten, "Design of an Eye-in-Hand Sensing and Servo Control Framework for Harvesting Robotics in Dense Vegetation," Biosystems Engineering, Vol.146, 71-84E. 2016. http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001.
[8]N. Uchiyama, T. Dewi, and S. Sano, "Collision Avoidance Control for a Human-Operated Four Wheeled Mobile Robot," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 228, No. 13, pp. 2278-2284, 2014. https://doi.org/10.1177/0954406213518523.
[9]T. Dewi, N. Uchiyama, S. Sano, and H. Takahashi, "Swarm Robot Control for Human Services and Moving Rehabilitation by Sensor Fusion," Journal of Robotics, 2014(278659), 11 pages, 2014. https://doi.org/10.1155/2014/278659.
[10]T. Dewi, N. Uchiyama, S. Sano, and H. Takahashi, “Swarm Robot Control for Human Services and Moving Rehabilitation by Sensor Fusion,” Journal of Robotics, 2014, ID: 278659, 11 pages, 2014, DOI: 10.1155/ 2014/278659
[11]Y. Tang, M. Chen, C. Wang, L. Luo, J. Li, G. Lian, and X. Zou, "Recognition and localization methods for vision-based fruit picking robots : A review," Frontier in Plant Science, vol. 11, Article 510, pp. 1-17, 2020. DOI: 10.3389/fpls.2020.00510.
[12]T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020, DOI: 10.1088/1742-6596/1500/1/ 012003
[13]T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161.
[14]T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020, DOI: 10.11591/eei.v9i4.2353.
[15]T. Dewi, P. Risma, Y. Oktarina, and S. Muslimin, “Visual Servoing Design and Control for Agriculture Robot; a Review,” Proc. 2019 ICECOS, 2-4 Oct. 2018, Pangkal Pinang: Indonesia, 2018, pp. 57-62, DOI: 10.1109/ICECOS.2018.8605209.
[16]Q.Fan, Z. Gong, B. Tao, Y. Gao, Z. Yin, and H. Ding, "Base Position Optimization of Mobile Manipulators for Machining Large Complex Components," Robotics and Computer-Integrated Manufacturing, Vol. 70, pp. 102138, 2021. https://doi.org/10.1016/j.rcim.2021.102138.
[17]H. Zhang, Q. Sheng, Y. Sun, X. Sheng, Z. Xiong, and X. Zhu, "A Novel Coordinated Motion Planner Based on Capability Map for Autonomous Mobile Manipulator," Robotics and Autonomous Systems, Vol. 129, 103554, 2020. https://doi.org/10.1016/j.robot.2020.103554.
[18]O. B. Perez, B. Fidan, and C. Nielsen, "Adaptive Path Following for a Nonholonomic Mobile Manipulator," IFAC-PapersOnLine, Vol. 53, No 2, pp. 3874-3879, 2020. https://doi.org/10.1016/j.ifacol.2020.12.2081.
[19]M. Osman, M. W. Mehrez, S. Yang, S. Jeon, and W. Melek, "End-Effector Stabilization of a 10-DOF Mobile Manipulator using Nonlinear Model Predictive Control," IFAC-PapersOnLine, Vol. 53, No 2, pp. 9772-9777, 2020. https://doi.org/10.1016/j.ifacol.2020.12.2658.
[20]IRENA, Renewable Energy Prospects: Indonesia, a REmap analysis, International Renewable Energy Agency (IRENA), Abu Dhabi, 2017, www.irena.org/remap.
[21]DEN, “Outlook Energy Indonesia 2019,” Secretariat General National Energy Council, ISSN 2527-3000.
[22]R.S. Nakandhrakumar, P. Rameshkumar, V. Parthasarathy, B. Thirupathy Rao, "Internet of Things (IoT) Based System Development for Robotic Waste Segregation Management," Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.02.473.
[23]Y. Oktarina, F. Septiarini, T. Dewi, P. Risma, and M. Nawawi, “Fuzzy-PID Controller Design of 4 DOF Industrial Arm Robot Manipulator,” Computer Engineering and Application Journal, vol. 8, no. 2, pp. 123-136, 2019, DOI: 10.18495/COMENGAP.v8i2. 300
[24]T. Dewi, S. Nurmaini, P. Risma, Y. Oktarina, and M. Roriz, “Inverse Kinematic Analysis of 4 DOF Pick and Place Arm Robot Manipulator using Fuzzy Logic Controller,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 2, pp. 1376-1386, 2019. DOI: 10.11591/ijece. v10i2.pp1376-1386.
[25]T. Dewi, P. Risma, and Y. Oktarina, “Fuzzy Logic Simulation as a Teaching-learning Media for Artificial Intelligence Class,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 12, no. 3, pp. 3-9, 2018, DOI: 10.14313/JAMRIS\_3-2018/13
[26]T. Dewi, C. Sitompul, P. Risma, Y. Oktarina, R. Jelista, and Mulyati, "Simulation Analysis of Formation Control Design of Leader-Follower Robot Using Fuzzy Logic Controller," Proc 2019 ICECOS, 2-3 Oct. 2019, Batam Island: Indonesia. doi:10.1109/ICECOS47637.2019.8984433.
[27]H. M. Yudha, T. Dewi, N. Hasanah, P. Risma, Y. Oktarina, and S. Kartini, "Performance Comparison of Fuzzy Logic and Neural Network Design for Mobile Robot Navigation, S., 2019, Proc. 2019 ICECOS, 2-3 Oct. 2019, Batam Island: Indonesia. doi:10.1109/ICECOS47637.2019.8984577
[28]T. Dewi, P. Risma, Y. Oktarina, M.T. Roseno, H.M. Yudha, A. S. Handayani, and Y. Wijanarko, “A Survey on Solar Cell; The Role of Solar Cell in Robotics and Robotic Application in Solar Cell industry,” in Proceeding Forum in Research, Science, and Technology (FIRST), 2016. Retrieved from http://eprints.polsri.ac.id/3576/3/C4.pdf.
[29]K. Jäger, O. Isabella, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Solar Energy: Fundamentals, Technology, and Systems,” Delft University of Technology, UITCAMBRIDGELTD, Isbn/Ean: 1906860327/9781906860325,2014.
[30]T. Dewi, P. Risma, and Y. Oktarina, “A Review of Factors Affecting the Efficiency and Output of a PV system Applied in Tropical Climate,” in IOP Conference Series: Earth and Environmental Science 258 012039 ICoSITer 2018, 2019. doi:10.1088/1755-1315/258/1/012039.
[31]H.A. Harahap, T. Dewi, and Rusdianasari, “Automatic Cooling System for Efficiency and Output Enhancement of a PV System Application in Palembang, Indonesia,” in 2nd Forum in Research, Science, and Technology, IOP Conf. Series: Journal of Physics: Conf. Series 1167 012027, 2019. doi:10.1088/1742-6596/1167/1/012027.
[32]Sarwono, T. Dewi, and RD Kusumanto, "Geographical Location Effects on PV Panel Output -Comparison Between Highland and Lowland Installation in South Sumatra, Indonesia," Technology Reports of Kansai University, Vol. 63, No. 02, pp. 7229-7243, 2021.ISSN: 04532198.
[2]M. Stoelen, K. Krzysztof, V. F. Tejada, N. Heiberg, C. Balaguer, and A. Korsaeth, "Low-Cost Robotics for Horticulture: A Case Study on Automated Sugar Pea Harvesting," 10th European Conference on Precision Agriculture (ECPA), 2015. DOI: 10.3920/978-90-8686-814-8_34.
[3]T. Duckett, S. Pearson, S. Blackmore, and B. Grieve, "Agriculture Robotics: The Future of Robotic Agriculture," UK-RAS Network Robotics & Autonomous System, 2018. ISSN 2391-4414.
[4]P. Kumar and G. Ashok, " Design and Fabrication of Smart Seed Sowing Robot," Materials Today: Proceedings, Vol. 39, Part 1, pp. 354-358, 2021, https://doi.org/10.1016/j.matpr.2020.07.432.
[5]S. Cubero, E. Marco-Noales, N. Aleixos, S. Barbé, and J. Blasco, "RobHortic: A Field Robot to Detect Pests and Diseases in Horticultural Crops by Proximal Sensing," Agriculture 2020, Vol. 10, No. 7, 276, 2020. https://doi.org/10.3390/agriculture10070276.
[6]A. S. A. Ghafar, S. S. H. Hajjaj, K. R. Gsangaya, M. T. H. Sultan, M. F. Mail, and L. S. Hua, "Design and Development of a Robot for Spraying Fertilizers and Pesticides for Agriculture, Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.03.174.
[7]R. Barth, J. Hemming, and E. J. van Henten, "Design of an Eye-in-Hand Sensing and Servo Control Framework for Harvesting Robotics in Dense Vegetation," Biosystems Engineering, Vol.146, 71-84E. 2016. http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001.
[8]N. Uchiyama, T. Dewi, and S. Sano, "Collision Avoidance Control for a Human-Operated Four Wheeled Mobile Robot," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 228, No. 13, pp. 2278-2284, 2014. https://doi.org/10.1177/0954406213518523.
[9]T. Dewi, N. Uchiyama, S. Sano, and H. Takahashi, "Swarm Robot Control for Human Services and Moving Rehabilitation by Sensor Fusion," Journal of Robotics, 2014(278659), 11 pages, 2014. https://doi.org/10.1155/2014/278659.
[10]T. Dewi, N. Uchiyama, S. Sano, and H. Takahashi, “Swarm Robot Control for Human Services and Moving Rehabilitation by Sensor Fusion,” Journal of Robotics, 2014, ID: 278659, 11 pages, 2014, DOI: 10.1155/ 2014/278659
[11]Y. Tang, M. Chen, C. Wang, L. Luo, J. Li, G. Lian, and X. Zou, "Recognition and localization methods for vision-based fruit picking robots : A review," Frontier in Plant Science, vol. 11, Article 510, pp. 1-17, 2020. DOI: 10.3389/fpls.2020.00510.
[12]T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020, DOI: 10.1088/1742-6596/1500/1/ 012003
[13]T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161.
[14]T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020, DOI: 10.11591/eei.v9i4.2353.
[15]T. Dewi, P. Risma, Y. Oktarina, and S. Muslimin, “Visual Servoing Design and Control for Agriculture Robot; a Review,” Proc. 2019 ICECOS, 2-4 Oct. 2018, Pangkal Pinang: Indonesia, 2018, pp. 57-62, DOI: 10.1109/ICECOS.2018.8605209.
[16]Q.Fan, Z. Gong, B. Tao, Y. Gao, Z. Yin, and H. Ding, "Base Position Optimization of Mobile Manipulators for Machining Large Complex Components," Robotics and Computer-Integrated Manufacturing, Vol. 70, pp. 102138, 2021. https://doi.org/10.1016/j.rcim.2021.102138.
[17]H. Zhang, Q. Sheng, Y. Sun, X. Sheng, Z. Xiong, and X. Zhu, "A Novel Coordinated Motion Planner Based on Capability Map for Autonomous Mobile Manipulator," Robotics and Autonomous Systems, Vol. 129, 103554, 2020. https://doi.org/10.1016/j.robot.2020.103554.
[18]O. B. Perez, B. Fidan, and C. Nielsen, "Adaptive Path Following for a Nonholonomic Mobile Manipulator," IFAC-PapersOnLine, Vol. 53, No 2, pp. 3874-3879, 2020. https://doi.org/10.1016/j.ifacol.2020.12.2081.
[19]M. Osman, M. W. Mehrez, S. Yang, S. Jeon, and W. Melek, "End-Effector Stabilization of a 10-DOF Mobile Manipulator using Nonlinear Model Predictive Control," IFAC-PapersOnLine, Vol. 53, No 2, pp. 9772-9777, 2020. https://doi.org/10.1016/j.ifacol.2020.12.2658.
[20]IRENA, Renewable Energy Prospects: Indonesia, a REmap analysis, International Renewable Energy Agency (IRENA), Abu Dhabi, 2017, www.irena.org/remap.
[21]DEN, “Outlook Energy Indonesia 2019,” Secretariat General National Energy Council, ISSN 2527-3000.
[22]R.S. Nakandhrakumar, P. Rameshkumar, V. Parthasarathy, B. Thirupathy Rao, "Internet of Things (IoT) Based System Development for Robotic Waste Segregation Management," Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.02.473.
[23]Y. Oktarina, F. Septiarini, T. Dewi, P. Risma, and M. Nawawi, “Fuzzy-PID Controller Design of 4 DOF Industrial Arm Robot Manipulator,” Computer Engineering and Application Journal, vol. 8, no. 2, pp. 123-136, 2019, DOI: 10.18495/COMENGAP.v8i2. 300
[24]T. Dewi, S. Nurmaini, P. Risma, Y. Oktarina, and M. Roriz, “Inverse Kinematic Analysis of 4 DOF Pick and Place Arm Robot Manipulator using Fuzzy Logic Controller,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 2, pp. 1376-1386, 2019. DOI: 10.11591/ijece. v10i2.pp1376-1386.
[25]T. Dewi, P. Risma, and Y. Oktarina, “Fuzzy Logic Simulation as a Teaching-learning Media for Artificial Intelligence Class,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 12, no. 3, pp. 3-9, 2018, DOI: 10.14313/JAMRIS\_3-2018/13
[26]T. Dewi, C. Sitompul, P. Risma, Y. Oktarina, R. Jelista, and Mulyati, "Simulation Analysis of Formation Control Design of Leader-Follower Robot Using Fuzzy Logic Controller," Proc 2019 ICECOS, 2-3 Oct. 2019, Batam Island: Indonesia. doi:10.1109/ICECOS47637.2019.8984433.
[27]H. M. Yudha, T. Dewi, N. Hasanah, P. Risma, Y. Oktarina, and S. Kartini, "Performance Comparison of Fuzzy Logic and Neural Network Design for Mobile Robot Navigation, S., 2019, Proc. 2019 ICECOS, 2-3 Oct. 2019, Batam Island: Indonesia. doi:10.1109/ICECOS47637.2019.8984577
[28]T. Dewi, P. Risma, Y. Oktarina, M.T. Roseno, H.M. Yudha, A. S. Handayani, and Y. Wijanarko, “A Survey on Solar Cell; The Role of Solar Cell in Robotics and Robotic Application in Solar Cell industry,” in Proceeding Forum in Research, Science, and Technology (FIRST), 2016. Retrieved from http://eprints.polsri.ac.id/3576/3/C4.pdf.
[29]K. Jäger, O. Isabella, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Solar Energy: Fundamentals, Technology, and Systems,” Delft University of Technology, UITCAMBRIDGELTD, Isbn/Ean: 1906860327/9781906860325,2014.
[30]T. Dewi, P. Risma, and Y. Oktarina, “A Review of Factors Affecting the Efficiency and Output of a PV system Applied in Tropical Climate,” in IOP Conference Series: Earth and Environmental Science 258 012039 ICoSITer 2018, 2019. doi:10.1088/1755-1315/258/1/012039.
[31]H.A. Harahap, T. Dewi, and Rusdianasari, “Automatic Cooling System for Efficiency and Output Enhancement of a PV System Application in Palembang, Indonesia,” in 2nd Forum in Research, Science, and Technology, IOP Conf. Series: Journal of Physics: Conf. Series 1167 012027, 2019. doi:10.1088/1742-6596/1167/1/012027.
[32]Sarwono, T. Dewi, and RD Kusumanto, "Geographical Location Effects on PV Panel Output -Comparison Between Highland and Lowland Installation in South Sumatra, Indonesia," Technology Reports of Kansai University, Vol. 63, No. 02, pp. 7229-7243, 2021.ISSN: 04532198.
- Abstract viewed - 950 times
- PDF downloaded - 815 times
Affiliations
Fradina Septiarini
Politeknik Negeri Sriwijaya
Tresna Dewi
Politeknik Negeri Sriwijaya
Rusdianasari Rusdianasari
Politeknik Negeri Sriwijaya
Fuzzy Logic Controller Application for Automatic Charging System Design of a Solar Powered Mobile Manipulator
Abstract
Agriculture is a vital industry that affects the livelihoods of many people. Given the reduction in agricultural employees and the increasing strain on farmers, this sector requires convenience, which the automation system may provide. One of the automations is mobile manipulator implementation to substitute farmers. This study investigates the automatic battery charging system supported by the Fuzzy Logic Controller (FLC) to power a mobile manipulator. The application of solar charging is an ideal power source for the robot applied in the open field with high irradiance all year long. This charging system is equipped with IoT monitoring online to monitor the available power produced by solar panel and the battery capacity condition. The effectiveness of the proposed method is proven by experiments conducted for ten times charging in ten days, where the highest power produced by the panel is 1.080 W with 0.563 W charged to the battery. The highest irradiance comes with the highest surface panel temperature of 58.9OC at the irradiance rate of 1021 W/m2. The experimental results show the possibility of the solar-powered robot, which is ideal for agriculture implementation.