[1] A. F. Khalaf, M. I. Owis, and I. A. Yassine, “A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines,” Expert Syst Appl, vol. 42, no. 21, pp. 8361–8368, 2015.
[2] Q. Qin, J. Li, L. Zhang, Y. Yue, and C. Liu, “Combining low-dimensional wavelet features and support vector machine for arrhythmia beat classification,” Sci Rep, vol. 7, no. 1, pp. 1–12, 2017.
[3] Y. F. Xiao, “Cardiac arrhythmia and heart failure: From bench to bedside,” Journal of Geriatric Cardiology, vol. 8, no. 3. pp. 131–132, 2011. doi: 10.3724/SP.J.1263.2011.00131.
[4] Dr. Chhavi Saxena, Dr. Avinash Sharma, Dr. Rahul Srivastav, and Dr. Hemant Kumar Gupta, “Denoising of Ecg Signals Using Fir & Iir Filter: a Performance Analysis,” International Journal of Engineering & Technology, vol. 7, no. 4.12, p. 1, Oct. 2018, doi: 10.14419/ijet.v7i4.12.20982.
[5] P. M. Tripathi, A. Kumar, R. Komaragiri, and M. Kumar, “A novel approach for real-time ECG signal denoising using Fourier decomposition method,” Research on Biomedical Engineering, vol. 38, no. 4, pp. 1037–1049, Sep. 2022, doi: 10.1007/s42600-022-00237-9.
[6] A. Kumar M. and A. Chakrapani, “Classification of ECG signal using FFT based improved Alexnet classifier,” PLoS One, vol. 17, no. 9, p. e0274225, Sep. 2022, doi: 10.1371/journal.pone.0274225.
[7] I. Hermawan, A. Y. Husodo, W. Jatmiko, B. Wiweko, A. Boediman, and B.K. Pradekso, “Denoising Noisy ECG Signal Based on Adaptive Fourier Decomposition,” in 2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), IEEE, Dec. 2018, pp. 11–14. doi: 10.1109/ISSIMM.201
[8] M. F. Safdar, R. M. Nowak, and P. Palka, “A Denoising and Fourier Transformation-Based Spectrograms in ECG Classification Using Convolutional Neural Network,” Sensors, vol. 22, no. 24, p. 9576, Dec. 2022, doi: 10.3390/s22249576.
[9] A. Azzouz et al., “An efficient ECG signals denoising technique based on the combination of particle swarm optimisation and wavelet,” Heliyon, vol. 10, no. 5, p. e26171, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26171.
[10] A. Kumar, H. Tomar, V. K. Mehla, R. Komaragiri, and M. Kumar, “Stationary wavelet transform based ECG signal denoising method,” ISA Trans, vol. 114, pp. 251–262, Aug. 2021, doi: 10.1016/j.isatra.2020.12.029.
[11] S. Nurmaini et al., “Robust detection of atrial fibrillation from short-term electrocardiogram using convolutional neural networks,” Future Generation Computer Systems, vol. 113, pp. 304–317, Dec. 2020, doi: 10.1016/j.future.2020.07.021.
[12] H. Huang, S. Hu, and Y. Sun, “A Discrete Curvature Estimation Based Low Distortion Adaptive Savitzky–Golay Filter for ECG Denoising,” Sensors, vol. 19, no. 7, p. 1617, Apr. 2019, doi: 10.3390/s19071617.
[13] N. Raheja and A. K. Manoacha, “Wavelet and Savitzky–Golay Filter-Based Denoising of Electrocardiogram Signal: An Improved Approach,” 2023, pp. 317–326. doi: 10.1007/978-981-99-2271-0_27.
[14] S. Fairooz, S. Balaji, R. Ramya, M. S. Prakash Balaji, P. Thanapal, and V. Elamaran, “A Case Study using Simple Moving Average Filters to accomplish ECG denoising on an FPGA,” in 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, Mar. 2023, pp. 244–248. doi: 10.1109/ICACCS57279.2023.10112847.
[15] A. K. Tanji, M. A. G. de Brito, M. G. Alves, R. C. Garcia, G.-L. Chen, and N. R. N. Ama, “Improved Noise Cancelling Algorithm for Electrocardiogram Based on Moving Average Adaptive Filter,” Electronics (Basel), vol. 10, no. 19, p. 2366, Sep. 2021, doi: 10.3390/electronics10192366.
[16] H.-T. Chiang, Y.-Y. Hsieh, S.-W. Fu, K.-H. Hung, Y. Tsao, and S.-Y. Chien, “Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders,” IEEE Access, vol. 7, pp. 60806–60813, 2019, doi: 10.1109/ACCESS.2019.2912036.
[17] S. Nurmaini, A. Darmawahyuni, A. N. Sakti Mukti, M. N. Rachmatullah, F. Firdaus, and B. Tutuko, “Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification,” Electronics (Basel), vol. 9, no. 1, p. 135, Jan. 2020, doi: 10.3390/electronics9010135.8.8727739.
[18] B. Hou, J. Yang, P. Wang, and R. Yan, “LSTM-Based Auto-Encoder Model for ECG Arrhythmias Classification,” IEEE Trans Instrum Meas, vol. 69, no. 4, pp. 1232–1240, Apr. 2020, doi: 10.1109/TIM.2019.2910342.
[19] K. Antczak, “Deep Recurrent Neural Networks for ECG Signal Denoising,” Jul. 2018.
[20] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet,” Circulation, vol. 101, no. 23, Jun. 2000, doi: 10.1161/01.CIR.101.23.e215.