[1] M. Senanayake, I. Senthooran, J. C. Barca, H. Chung, J. Kamruzzaman, and M. Murshed, “Search and tracking algorithms for swarms of robots: A survey,” Rob. Auton. Syst., vol. 75, pp. 422–434, 2016.
[2] Y. Mohan and S. G. Ponnambalam, “An extensive review of research in swarm robotics,” in Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, 2009, pp. 140–145.
[3] C. Blum and X. D. Li, “Swarm intelligence in optimization. Swarm Intelligence,” Nat. Comput. Ser., pp. 43–85, 2008.
[4] L. Yin, Y. Yin, and C.-J. Lin, “A new potential field method for mobile robot path planning in the dynamic environments,” Asian J. Control, vol. 11, no. 2, pp. 214–225, 2009.
[5] F. Abdessemed et al., “A hierarchical fuzzy control design for indoor mobile robot,” Int. J. Adv. Robot. Syst., vol. 11, no. 3, p. 33, 2014.
[6] M. K. Singh and D. R. Parhi, “Path optimisation of a mobile robot using an artificial neural network controller,” Int. J. Syst. Sci., vol. 42, no. 1, pp. 107–120, 2011.
[7] A. H. Karami and M. Hasanzadeh, “An adaptive genetic algorithm for robot motion planning in 2D complex environments,” Comput. Electr. Eng., vol. 43, pp. 317–329, 2015.
[8] S. Liu, Y. Tian, and J. Liu, “Multi mobile robot path planning based on genetic algorithm,” in Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, 2004, vol.5, pp. 4706–4709.
[9] Y.-Q. Qin, D.-B. Sun, N. Li, and Y.-G. Cen, “Path planning for mobile robot using the particle swarm optimization with mutation operator,” in Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on, 2004, vol. 4, pp. 2473–2478.
[10] F. Belkhouche, “Reactive path planning in a dynamic environment,” IEEE Trans. Robot., vol. 25, no. 4, pp. 902–911, 2009.
[11] P. K. Das, H. S. Behera, and B. K. Panigrahi, “A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning,” Swarm Evol. Comput., vol. 28, pp. 14–28, 2016.
[12] C. Luo, H. Mo, F. Shen, and W. Zhao, “Multi-goal motion planning of an autonomous robot in unknown environments by an ant colony optimization approach,” in International Conference in Swarm Intelligence, 2016, pp. 519–527.
[13] J. E. Bell and P. R. McMullen, “Ant colony optimization techniques for the vehicle routing problem,” Adv. Eng. informatics, vol. 18, no. 1, pp. 41–48, 2004.
[14] M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepúlveda, and P. Melin, “Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation,” Appl. Soft Comput., vol. 9, no. 3, pp. 1102–1110, 2009.
15] M. Dorigo and T. Stützle, “Ant colony optimization: overview and recent advances,” Techreport, IRIDIA, Univ. Libr. Bruxelles, vol. 8, 2009.
[16] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimization from social insect behaviour,” Nature, vol. 406, no. 6791, p. 39, 2000.
[17] M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, and A. Winfield, Ant Colony Optimization and Swarm Intelligence: 6th International Conference, ANTS 2008, Brussels, Belgium, September 22-24, 2008, Proceedings, vol. 5217. Springer, 2008.
[18] M. Mavrovouniotis and S. Yang, “Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors,” Appl. Soft Comput., vol. 13, no. 10, pp. 4023–4037, 2013.
[19] S. Sural, G. Qian, and S. Pramanik, “Segmentation and histogram generation using the HSV color space for image retrieval,” in Image Processing. 2002. Proceedings. 2002 International Conference on, 2002, vol. 2, pp. II--II.