Compressive sensing reduces the number of samples required to achieve acceptable reconstruction for medical diagnostics, therefore this research will implement dimensional reduction algorithms through compressed sensing for electrocardiogram signals (EKG). dimensional reduction is performed based on the fact that ECG signals can be reconstructed with linear combination coefficients with a bumpy base of small measurements with high accuracy. This study will use PCA for feature extraction on ECG signals. The data used are the ECG patient records on the website page www.physionet.org as many as 1200 with each attribute as many as 256 attributes. The total data dimension used is 1200x256, which means the data has 1200 rows and has as many as 256 columns. To show the accuracy of the dimensional reduction result, so it is performed classification on data using KNN and Naive Bayes. The classification results show that KKN can classify well with 84,02% accuracy rate and the Naive Bayes accuracy is 65,78%. for 100 dimensions The conclusion is those dimensional reductions for ECG data that have large dimensions, it still able to provide valid information like it uses the original data. Principle Component Analysis is a good method for reducing data dimensions by selecting certain features, so the dimensions of the data become smaller but still able to provide good accuracy to the reader.