[1] Allmadhor, A., Rauf, H. T., Lali, M. I. U., Damasevicius, R., Alouffi, B., & Alharbi, A. (2021). AI-driven framework for recognition of guava plant diseases through machine learning from DSLR camera sensor based high resolution imagery. Sensors, 21(11), 3830.
[2] Anand, A., Kadian, T., Shetty, M. K., & Gupta, A. (2022). Explainable AI decision model for ECG data of cardiac disorders. Biomedical Signal Processing and Control, 75, 103584.
[3] Cho, Y., Kwon, J.-m., Kim, K.-H., Medina-Inojosa, J. R., Jeon, K.-H., Cho, S., Lee, S. Y., Park, J., & Oh, B.-H. (2020). Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Scientific reports, 10(1), 1-10.
[4] Degerli, A., Zabihi, M., Kiranyaz, S., Hamid, T., Mazhar, R., Hamila, R., & Gabbouj, M. (2021). Early detection of myocardial infarction in low-quality echocardiography. IEEE Access, 9, 34442-34453.
[5] Fatimah, B., Singh, P., Singhal, A., Pramanick, D., Pranav, S., & Pachori, R. B. (2021). Efficient detection of myocardial infarction from single lead ECG signal. Biomedical Signal Processing and Control, 68, 102678.
[6] Gupta, D., Bajpai, B., Dhiman, G., Soni, M., Gomathi, S., & Mane, D. (2021). Review of ECG arrhythmia classification using deep neural network. Materials Today: Proceedings.
[7] Hammad, M., Chelloug, S. A., Alkanhel, R., Prakash, A. J., Muthanna, A., Elgendy, I. A., & Plawiak, P. (2022). Automated Detection of Myocardial Infarction and Heart Conduction Disorders Based on Feature Selection and a Deep Learning Model. Sensors, 22(17), 6503.
[8] Hammad, M., Iliyasu, A. M., Subasi, A., Ho, E. S., & Abd El-Latif, A. A. (2020). A multitier deep learning model for arrhythmia detection. IEEE Transactions on Instrumentation and Measurement, 70, 1-9.
[9] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
[10] He, Z., Yuan, Z., An, P., Zhao, J., & Du, B. (2021). MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning. Computer Methods and Programs in Biomedicine, 210, 106379.
[11] Ibrahim, L., Mesinovic, M., Yang, K.-W., & Eid, M. A. (2020). Explainable prediction of acute myocardial infarction using machine learning and shapley values. IEEE Access, 8, 210410-210417.
[12] Jahmunah, V., Ng, E., San, T. R., & Acharya, U. R. (2021). Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Computers in biology and medicine, 134, 104457.
[13] Khan, M. A., Alhaisoni, M., Tariq, U., Hussain, N., Majid, A., Damasevicius, R., & Maskeliunas, R. (2021). COVID-19 case recognition from chest CT images by deep learning, entropy-controlled firefly optimization, and parallel feature fusion. Sensors, 21(21), 7286.
[14] Menyar, A. A. (2006). Drug-induced myocardial infarction secondary to coronary artery spasm in teenagers and young adults. Journal of postgraduate medicine, 52(1), 51.
[15] Palczynski, K., Smigiel, S., Ledzinski, D., & Bujnowski, S. (2022). Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset. Sensors, 22(3), 904.
[16] Prabhakararao, E., & Dandapat, S. (2021). Multi-Scale Convolutional Neural Network Ensemble for Multi-Class Arrhythmia Classification. IEEE Journal of Biomedical and Health Informatics.
[17] Prakash, A. J., Samantray, S., Bala, C. L., & Narayana, Y. (2021). An Automated Diagnosis System for Cardiac Arrhythmia Classification. In Analysis of Medical Modalities for Improved Diagnosis in Modern Healthcare (pp. 301-313). CRC Press.
[18] Pustjens, T., Appelman, Y., Damman, P., Ten Berg, J., Jukema, J., de Winter, R., Agema, W., van der Wielen, M., Arslan, F., & Rasoul, S. (2020). Guidelines for the management of myocardial infarction/injury with non-obstructive coronary arteries (MINOCA): a position paper from the Dutch ACS working group. Netherlands Heart Journal, 28(3), 116-130.
[19] Ramaraj, E. (2021). A novel deep learning based gated recurrent unit with extreme learning machine for electrocardiogram (ECG) signal recognition. Biomedical Signal Processing and Control, 68, 102779.
[20] Sharma, L., & Sunkaria, R. (2020). Myocardial infarction detection and localization using optimal features based lead specific approach. Irbm, 41(1), 58-70.
[21] Sharma, L. D., & Sunkaria, R. K. (2018). Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal, Image and Video Processing, 12(2), 199-206.
[22] Smigiel, S., Palczynski, K., & Ledzinski, D. (2021a). Deep Learning Techniques in the Classification of ECG Signals Using R-Peak Detection Based on the PTB-XL Dataset. Sensors, 21(24), 8174.
[23] Smigiel, S., Palczynski, K., & Ledzinski, D. (2021b). ECG signal classification using deep learning techniques based on the PTB-XL dataset. Entropy, 23(9), 1121.
[24] Srinivasu, P. N., SivaSai, J. G., Ijaz, M. F., Bhoi, A. K., Kim, W., & Kang, J. J. (2021). Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors, 21(8), 2852.
[25] Wagner, P., Strodthoff, N., Bousseljot, R.-D., Kreiseler, D., Lunze, F. I., Samek, W., & Schaeffter, T. (2020). PTB-XL, a large publicly available electrocardiography dataset. Scientific data, 7(1), 1-15. [Record #183 is using a reference type undefined in this output style.]
Zhang, J., Liang, D., Liu, A., Gao, M., Chen, X., Zhang, X., & Chen, X. (2021). MLBF-Net: a multi-lead-branch fusion network for multi-class arrhythmia classification using 12-Lead ECG. IEEE Journal of Translational Engineering in Health and Medicine, 9, 1-11