Abstract

Littering has become a significant problem that negatively impacts public health and environmental cleanliness. This research introduces an innovative solution using 3D Convolutional Neural Networks (3D CNN) technology to automatically detect littering behavior through real-time CCTV recordings. Two models were developed and tested. Model 1, which employs Conv3D, Batch Normalization, and Dropout, showed high training accuracy but exhibited fluctuations in validation accuracy, indicating potential overfitting. In contrast, Model 2, designed with a simpler structure without Batch Normalization and Dropout, achieved higher classification accuracy and efficiency. Both models significantly contribute to addressing littering in public areas, increasing awareness, and supporting environmental law enforcement. The integration of 3D CNN technology in detecting littering behavior demonstrates its potential to reduce pollution and promote environmentally responsible behavior.