[1] W. H. Organization and others, “World health statistics 2017: monitoring health for the SDGs, sustainable development goals,” 2017.
[2] R. I. Kementrian Kesehatan, “Riset kesehatan dasar,” Jakarta Kementerian. Kesehatan. RI, 2013.
[3] NHLBI, “Coronary Heart Disease.” [Online]. Available: https://www.nhlbi.nih.gov/health-topics/coronary-heart-disease.
[4] D. R. Chowdhury, M. Chatterjee, and R. K. Samanta, “An artificial neural network model for neonatal disease diagnosis,” Int. J. Artif. Intell. Expert Syst., vol. 2, no. 3, pp. 96–106, 2011.
[5] G. Subbalakshmi, K. Ramesh, and M. C. Rao, “Decision support in heart disease prediction system using naive bayes,” Indian J. Comput. Sci. Eng., vol. 2, no. 2, pp. 170–176, 2011.
[6] J. Nahar, T. Imam, K. S. Tickle, and Y.-P. P. Chen, “Computational intelligence for heart disease diagnosis: A medical knowledge driven approach,” Expert Syst. Appl., vol. 40, no. 1, pp. 96–104, 2013.
[7] E. O. Olaniyi, O. K. Oyedotun, A. Helwan, and K. Adnan, “Neural network diagnosis of heart disease,” in Advances in Biomedical Engineering (ICABME), 2015 International Conference on, 2015, pp. 21–24.
[8] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,” ACM Sigkdd Explor. Newsl., vol. 12, no. 1, pp. 40–48, 2010.
[9] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series classification using multi-channels deep convolutional neural networks,” in International Conference on Web-Age Information Management, 2014, pp. 298–310.
[10] N. A. Sundar, P. P. Latha, and M. R. Chandra, “Performance analysis of classification data mining techniques over heart disease database,” IJESAT] Int. J. Eng. Sci. Adv. Technol. ISSN, pp. 2250–3676, 2012.
[11] V. Chaurasia and S. Pal, “Data mining approach to detect heart diseases,” 2014.
[12] A. A. Shinde, “Heart Disease Prediction System using Multilayered Feed Forward Neural Network and Back Propagation Neural Network,” 2017.
[13] A. Janosi, “UCI Machine Learning Repository Heart Disease Dataset.” [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Heart+Disease. [Accessed: 06-Dec-2018].
[14] Y. K. Jain and S. K. Bhandare, “Min max normalization based data perturbation method for privacy protection,” Int. J. Comput. Commun. Technol., vol. 2, no. 8, pp. 45–50, 2011.
[15] F. Amato, A. López, E. M. Peña-Méndez, P. Va\vnhara, A. Hampl, and J. Havel, “Artificial neural networks in medical diagnosis.” Elsevier, 2013.
[16] N. Larasati, T. Dewi, and Y. Oktarina, “Object following design for a mobile robot using neural network,” Comput. Eng. Appl. J., vol. 6, no. 1, pp. 5–14, 2017.
[17] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for speaker recognition using a phonetically-aware deep neural network,” in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 2014, pp. 1695–1699.
[18] S. Nurmaini, A. Gani, and others, “Cardiac Arrhythmias Classification Using Deep Neural Networks and Principle Component Analysis Algorithm.,” Int. J. Adv. Soft Comput. Its Appl., vol. 10, no. 2, 2018.
[19] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on the cross-entropy method,” Ann. Oper. Res., vol. 134, no. 1, pp. 19–67, 2005.
[20] S. Ronaghan, “Deep Learning: Which Loss and Activation Functions should I use?” [Online]. Available: https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8.
[21] X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved method to construct basic probability assignment based on the confusion matrix for classification problem,” Inf. Sci. (Ny)., vol. 340, pp. 250–261, 2016.
[22] S. Pintea and R. Moldovan, “The receiver-operating characteristic (ROC) analysis: Fundamentals and applications in clinical psychology.,” J. Cogn. Behav. Psychother., vol. 9, no. 1, 2009.
[23] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, 2006.
[24] J.-S. Wang, W.-C. Chiang, Y.-L. Hsu, and Y.-T. C. Yang, “ECG arrhythmia classification using a probabilistic neural network with a feature reduction method,” Neurocomputing, vol. 116, pp. 38–45, 2013.
[25] R. Kumar and A. Indrayan, “Receiver operating characteristic (ROC) curve for medical researchers,” Indian Pediatr., vol. 48, no. 4, pp. 277–287, 2011.
[26] K. H. Zou, “Receiver operating characteristic (ROC) literature research,” On-line Bibliogr. available from< http//splweb. bwh. harvard. edu, vol. 8000, 2002.
[27] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks for LVCSR using rectified linear units and dropout,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp. 8609–8613.