[1]M. De Onis and F. Branca, “Childhood stunting: a global perspective,” Matern. Child Nutr., vol. 12, pp. 12–26, 2016.
[2]J. L. Leroy and E. A. Frongillo, “Perspective: what does stunting really mean? A critical review of the evidence,” Adv. Nutr., vol. 10, no. 2, pp. 196–204, 2019.
[3]B. J. Akombi, K. E. Agho, J. J. Hall, D. Merom, T. Astell-Burt, and A. M. N. Renzaho, “Stunting and severe stunting among children under-5 years in Nigeria: A multilevel analysis,” BMC Pediatr., vol. 17, no. 1, p. 15, 2017.
[4]World Health Organization, “Global nutrition targets 2025: stunting policy brief. 2014.” 2018.
[5]J. Sugiyanto, S. S. Raharjo, and Y. L. R. Dewi, “The effects of exclusive breastfeeding and contextual factor of village on stunting in bontang, east kalimantan, indonesia,” J. Epidemiol. Public Heal., vol. 4, no. 3, pp. 222–233, 2019.
[6]J. R. Batubara, S. Bardosono, A. Irawati, and S. Salimar, “Comparing The Anthropometric Measurements of Intra-Extra Uterine Period between Stunting and Non-stunting Children Aged 6-24 Months Old in Bogor Tengah Subdistrict, Bogor City, West Java,” World Nutr. J., vol. 3, no. 1, pp. 1–7, 2019.
[7]A. Z. Foeady, D. C. R. Novitasari, A. H. Asyhar, and M. Firmansjah, “Automated Diagnosis System of Diabetic Retinopathy Using GLCM Method and SVM Classifier,” Proceeding Electr. Eng. Comput. Sci. Informatics, vol. 5, no. 5, pp. 154–160, 2018.
[8]S. Weiss et al., “Normalization and microbial differential abundance strategies depend upon data characteristics,” Microbiome, vol. 5, no. 1, p. 27, 2017.
[9]S. J. Mukhyber and A. D. M. DhahirAbdulhadeAbdulah, “Effect Z-score Normalization on Accuracy of classification of liver disease,” Turkish J. Comput. Math. Educ., vol. 12, no. 14, pp. 658–662, 2021.
[10]A. Fern and S. Garc, “SMOTE for Learning from Imbalanced Data : Progress and Challenges , Marking the 15-year Anniversary,” vol. 61,pp. 863–905, 2018.
[11]D. C. R. Novitasari et al., “Whirlwind Classification with Imbalanced Upper Air Data Handling using {SMOTE} Algorithm and {SVM} Classifier,” J. Phys. Conf. Ser., vol. 1501, p. 12010, Mar. 2020, doi: 10.1088/1742-6596/1501/1/012010.
[12]M. B. Bora, D. Daimary, K. Amitab, and D. Kandar, “Handwritten Character Recognition from Images using CNN-ECOC,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 2403–2409, 2020, doi: 10.1016/j.procs.2020.03.293.
[13]S. H. Wang, K. Muhammad, J. Hong,A. K. Sangaiah, and Y. D. Zhang, “Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization,” Neural Comput. Appl., vol. 32, no. 3, pp. 665–680, 2020, doi: 10.1007/s00521-018-3924-0.
[14]M. N. Aulia, M. L. Khodra, and A. P. Koesoema, “Predicting Macronutrient of Baby Food using Near-infrared Spectroscopy and Deep Learning Approach,” 2020.
[15]M.-L. How and Y. J. Chan, “Artificial Intelligence-Enabled Predictive Insights for Ameliorating Global Malnutrition: A Human-Centric AI-Thinking Approach,” AI, vol. 1, no. 1, pp. 68–91, 2020.
[16]M. Shahriar, M. S. Iqubal, S. Mitra, and A. K. Das, “A Deep Learning Approach to Predict Malnutrition Status of 0-59 Month’s Older Children in Bangladesh,” in 2019IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), 2019, pp. 145–149.
[17]Z. Momand, P. Mongkolnam, P. Kositpanthavong, and J. H. Chan, “Data Mining Based Prediction of Malnutrition in Afghan Children,” in 2020 12th International Conference on Knowledge and Smart Technology (KST), 2020, pp. 12–17.
[18]A. H. Asyhar, A. Z. Foeady, M. Thohir, A. Z. Arifin, D. Z. Haq, and D. C. R. Novitasari, “Implementation LSTM Algorithm for Cervical Cancer using Colposcopy Data,” in 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2020, pp. 485–489.
[19]Z. Zheng, Z. Chen, F. Hu, J. Zhu, Q. Tang, and Y. Liang, “An Automatic Diagnosis of Arrhythmias Using a Combination of CNN and LSTM Technology,” Electronics, vol. 9, no. 1, p. 121, 2020.
[20]M. Bellone, E. Faghani, and Y. Karayiannidis, “Comparison of CNN and LSTM for Modeling Virtual Sensors in an Engine,” SAE Technical Paper, 2020.
[21]K. Astarani, D. I. S. H. Poernomo, D. N. T. Idris, and A. R. Oktavia, “Prevention of Stunting Through Health Education in Parents of Pre-School Children,” Str. J. Ilm. Kesehat., vol. 9, no. 1, pp. 70–77, 2020.
[22]S. Habimana and E. Biracyaza, “Risk factors of stunting among children under 5 years of age in the eastern and western provinces of Rwanda: analysis of Rwanda demographic and health survey 2014/2015,” Pediatr. Heal. Med. Ther., vol. 10, p. 115, 2019.
[23]A. K. Yadav and S. T. Karki, “Short Stature in Children Visiting Endocrine Out Patient Department of Kanti Children’s Hospital, Nepal,” J. Coll. Med. Sci., vol. 17, no. 1, 2021.
[24]H. da Silva Ferreira, “Anthropometric assessment of children’s nutritional status: a new approach based on an adaptation of Waterlow’s classification,” BMC Pediatr., vol. 20, no. 1, pp. 1–11, 2020.
[25]S. Kappal, “Data normalization using median median absolute deviation MMAD based Z-score for robust predictions vs. min–max normalization,” London J. Res. Sci. Nat. Form., 2019.
[26]B. N. Silva et al., “Urban planning and smart city decision management empowered by real-time data processing using big data analytics,” Sensors, vol. 18, no. 9, p. 2994, 2018.
[27]A. Fernández, S. Garcia, F. Herrera, and N. V Chawla, “SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary,” J. Artif. Intell. Res., vol. 61, pp. 863–905,2018.
[28]D. Z. Haq et al., “Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data,” Procedia Comput. Sci., vol. 179, pp. 829–837, 2021.
[29]J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term memory for machine remaining life prediction,” J. Manuf. Syst., vol. 48, pp. 78–86, 2018.
[30]S. Visa, B. Ramsay, A. L. Ralescu, and E. Van Der Knaap, “Confusion Matrix-based Feature Selection.,” MAICS, vol. 710, pp. 120–127, 2011.
[31]M. Thohir, A. Z. Foeady, D. C. R. Novitasari, A. Z. Arifin, B. Y. Phiadelvira, and A. H. Asyhar, “Classification of Colposcopy Data Using GLCM-SVM on Cervical Cancer,” in 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2020, pp. 373–378.