[1]A. Sydbom, A. Blomberg, S. Parnia, N. Stenfors, T. Sandström, and S. E. Dahlén, “Health effects of diesel exhaust emissions,” Eur. Respir. J., vol. 17, no. 4, pp. 733–746, 2001, doi: 10.1183/09031936.01.17407330.
[2]J. E. Thompson, “Crowd-sourced air quality studies: A review of the literature & portable sensors,” Trends Environ. Anal. Chem., vol. 11, pp. 23–34, 2016, doi: 10.1016/j.teac.2016.06.001.
[3]H. Hasunuma, Y. Ishimaru, Y. Yoda, and M. Shima, “Decline of ambient air pollution levels due to measures to control automobile emissions and effects on the prevalence of respiratory and allergic disorders among children in Japan,” Environ. Res., vol. 131, no. x, pp. 111–118, 2014, doi: 10.1016/j.envres.2014.03.007.
[4]F. Yip et al., “Assessment of traditional and improved stove use on household air pollution and personal exposures in rural western Kenya,” Environ. Int., vol. 99, pp. 185–191, 2017, doi: 10.1016/j.envint.2016.11.015.
[5]M. Yu et al., “Effects of air pollution control measures on air qualityimprovement in Guangzhou, China,” J. Environ. Manage., vol. 244, no. May, pp. 127–137, 2019, doi: 10.1016/j.jenvman.2019.05.046.
[6]D. Penney, V. Benignus, S. Kephalopoulos, D. Kotzias, M. Kleinman, and Agnes Verrier, “Guidelines for indoor air quality,”WHO Guidel., vol. 9, p. 454, 2010, doi: 10.1186/2041-1480-2-S2-I1.
[7]D. Y. C. Leung, “Outdoor-indoor air pollution in urban environment: Challenges and opportunity,” Front. Environ. Sci., vol. 2, no. JAN, pp. 1–7, 2015, doi: 10.3389/fenvs.2014.00069.
[8]J. M. Seguel, R. Merrill, D. Seguel, and A. C. Campagna, “Indoor Air Quality,” Am. J. Lifestyle Med., vol. 11, no. 4, pp. 284–295, 2017, doi: 10.1177/1559827616653343.
[9]J. Sundell, “On the history of indoor air quality and health,” Indoor Air, Suppl.,vol. 14, no. SUPPL. 7, pp. 51–58, 2004, doi: 10.1111/j.1600-0668.2004.00273.x.
[10]S. Abraham and X. Li, “A cost-effective wireless sensor network system for indoor air quality monitoring applications,” Procedia Comput. Sci., vol. 34, pp. 165–171, 2014, doi: 10.1016/j.procs.2014.07.090.
[11]V. Van Tran, D. Park, and Y. C. Lee, “Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality,” Int. J. Environ. Res. Public Health, vol. 17, no. 8, 2020, doi: 10.3390/ijerph17082927.
[12]H. J. Oh and J. Kim, “Monitoring air quality and estimation of personal exposure to particulate matter using an indoor model and artificial neural network,” Sustain., vol. 12, no. 9, pp. 13–18, 2020, doi: 10.3390/su12093794.
[13]V. U. Brussel et al., “Investigation of Particulate Matter Pollutants in Parking Garages,” latest Adv. Biol. Environ. Ecol., vol. 1, no. x, pp. 105–109, 2012.
[14]R. Pitarma, G. Marques, and C. Filipe, “Monitoring indoor air quality to improve occupational health,” Adv. Intell. Syst. Comput., vol. 445, no. October, 2016, doi: 10.1007/978-3-319-31307-8.
[15]C.-S. Oh, M.-S. Seo, J.-H. Lee, S.-H. Kim, Y.-D. Kim, and H.-J. Park, “Indoor Air Quality Monitoring Systems in the IoT Environment,” J. Korean Inst. Commun. Inf. Sci., vol. 40, no. 5, pp. 886–891, 2015, doi: 10.7840/kics.2015.40.5.886.
[16]J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Comput. Networks, vol. 52, no. 12, pp. 2292–2330, 2008, doi: 10.1016/j.comnet.2008.04.002.
[17]A. S. Handayani et al., “Robustness of Sensors Network in Environmental Monitoring,” Proc. -2018 Int.Conf. Appl. Sci. Technol. iCAST 2018, vol. 2018, pp. 515–520, doi: 10.1109/iCAST1.2018.8751508.
[18]P. Arroyo, J. Lozano, and J. I. Suárez, “Evolution of wireless sensor network for air quality measurements,” Electron., vol. 7, no. 12, 2018, doi: 10.3390/electronics7120342.
[19]and C. R. S. A. S. Handayani, N. L. Husni, R. Permatasari, “Implementation of Multi Sensor Network as Air Monitoring Using IoT Applications,” 34th Int. Tech. Conf. Circuits/Systems, Comput. Commun. ITC-CSCC 2019, pp. 3–6, 2019, doi: 10.1109/ITC-CSCC.2019.8793407.
[20]M. Hautefeuille, C. O’Mahony, B. O’Flynn, K. Khalfi, and F. Peters, “A MEMS-based wireless multisensor module for environmental monitoring,” Microelectron. Reliab., vol. 48, no. 6, pp. 906–910, 2008, doi: 10.1016/j.microrel.2008.03.007.
[21]A. Naziha, L. Fu, G. M. Elamine, and L. Wang, “A method to construct an indoor air pollution monitoring system based on a wireless sensor network,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi: 10.3390/s19040967.
[22]S. Widodo, M. M. Amin, A. Supani, and A. S. Handayani, “Prototype Design of CO2, CH4 and SO2 Toxic Gas Detectors in the Room Using Microcontroller-Based Fuzzy Logic,” J. Phys. Conf. Ser., vol. 1500, no. 1, 2020, doi: 10.1088/1742-6596/1500/1/012107.
[23]C. Zuidema et al., “Mapping Occupational Hazards with a Multi-sensor Network in a Heavy-Vehicle Manufacturing Facility,” Ann. Work Expo. Heal., vol. 63, no. 3, pp. 280–293, 2019, doi: 10.1093/annweh/wxy111.
[24]D. D. Lee, “Environmental gas sensors,” IEEE Sens. J., vol. 1, no. 3, pp. 214–224, 2001, doi: 10.1109/JSEN.2001.954834.
[25]G. F. Fine, L. M. Cavanagh, A.Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors, vol. 10, no. 6, pp. 5469–5502, 2010, doi: 10.3390/s100605469.
[26]A. C. Lewis et al., “Evaluating the performance of low cost chemical sensors for air pollution research,” Faraday Discuss., vol. 189, pp. 85–103, 2016, doi: 10.1039/c5fd00201j.
[27]F. Karagulian et al., “Review of the performance of low-cost sensors for air quality monitoring,” Atmosphere (Basel)., vol. 10, no. 9, 2019, doi: 10.3390/atmos10090506.
[28]Y. Miao, H. Wu, and L. Zhang, “The Accurate Location Estimation of Sensor Node Using Received Signal Strength Measurements in Large-Scale Farmland,” 2018, doi: 10.1155/2018/2325863.
[29]N. P. Hyslop and W. H. White, “Estimating precision using duplicate measurements,” J. Air Waste Manag. Assoc., vol. 59, no. 9, pp. 1032–1039, 2009, doi: 10.3155/1047-3289.59.9.1032.
[30]F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction methods,” ACM Comput. Surv., vol. 42, no. 3, 2010, doi: 10.1145/1670679.1670680.
[2]J. E. Thompson, “Crowd-sourced air quality studies: A review of the literature & portable sensors,” Trends Environ. Anal. Chem., vol. 11, pp. 23–34, 2016, doi: 10.1016/j.teac.2016.06.001.
[3]H. Hasunuma, Y. Ishimaru, Y. Yoda, and M. Shima, “Decline of ambient air pollution levels due to measures to control automobile emissions and effects on the prevalence of respiratory and allergic disorders among children in Japan,” Environ. Res., vol. 131, no. x, pp. 111–118, 2014, doi: 10.1016/j.envres.2014.03.007.
[4]F. Yip et al., “Assessment of traditional and improved stove use on household air pollution and personal exposures in rural western Kenya,” Environ. Int., vol. 99, pp. 185–191, 2017, doi: 10.1016/j.envint.2016.11.015.
[5]M. Yu et al., “Effects of air pollution control measures on air qualityimprovement in Guangzhou, China,” J. Environ. Manage., vol. 244, no. May, pp. 127–137, 2019, doi: 10.1016/j.jenvman.2019.05.046.
[6]D. Penney, V. Benignus, S. Kephalopoulos, D. Kotzias, M. Kleinman, and Agnes Verrier, “Guidelines for indoor air quality,”WHO Guidel., vol. 9, p. 454, 2010, doi: 10.1186/2041-1480-2-S2-I1.
[7]D. Y. C. Leung, “Outdoor-indoor air pollution in urban environment: Challenges and opportunity,” Front. Environ. Sci., vol. 2, no. JAN, pp. 1–7, 2015, doi: 10.3389/fenvs.2014.00069.
[8]J. M. Seguel, R. Merrill, D. Seguel, and A. C. Campagna, “Indoor Air Quality,” Am. J. Lifestyle Med., vol. 11, no. 4, pp. 284–295, 2017, doi: 10.1177/1559827616653343.
[9]J. Sundell, “On the history of indoor air quality and health,” Indoor Air, Suppl.,vol. 14, no. SUPPL. 7, pp. 51–58, 2004, doi: 10.1111/j.1600-0668.2004.00273.x.
[10]S. Abraham and X. Li, “A cost-effective wireless sensor network system for indoor air quality monitoring applications,” Procedia Comput. Sci., vol. 34, pp. 165–171, 2014, doi: 10.1016/j.procs.2014.07.090.
[11]V. Van Tran, D. Park, and Y. C. Lee, “Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality,” Int. J. Environ. Res. Public Health, vol. 17, no. 8, 2020, doi: 10.3390/ijerph17082927.
[12]H. J. Oh and J. Kim, “Monitoring air quality and estimation of personal exposure to particulate matter using an indoor model and artificial neural network,” Sustain., vol. 12, no. 9, pp. 13–18, 2020, doi: 10.3390/su12093794.
[13]V. U. Brussel et al., “Investigation of Particulate Matter Pollutants in Parking Garages,” latest Adv. Biol. Environ. Ecol., vol. 1, no. x, pp. 105–109, 2012.
[14]R. Pitarma, G. Marques, and C. Filipe, “Monitoring indoor air quality to improve occupational health,” Adv. Intell. Syst. Comput., vol. 445, no. October, 2016, doi: 10.1007/978-3-319-31307-8.
[15]C.-S. Oh, M.-S. Seo, J.-H. Lee, S.-H. Kim, Y.-D. Kim, and H.-J. Park, “Indoor Air Quality Monitoring Systems in the IoT Environment,” J. Korean Inst. Commun. Inf. Sci., vol. 40, no. 5, pp. 886–891, 2015, doi: 10.7840/kics.2015.40.5.886.
[16]J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Comput. Networks, vol. 52, no. 12, pp. 2292–2330, 2008, doi: 10.1016/j.comnet.2008.04.002.
[17]A. S. Handayani et al., “Robustness of Sensors Network in Environmental Monitoring,” Proc. -2018 Int.Conf. Appl. Sci. Technol. iCAST 2018, vol. 2018, pp. 515–520, doi: 10.1109/iCAST1.2018.8751508.
[18]P. Arroyo, J. Lozano, and J. I. Suárez, “Evolution of wireless sensor network for air quality measurements,” Electron., vol. 7, no. 12, 2018, doi: 10.3390/electronics7120342.
[19]and C. R. S. A. S. Handayani, N. L. Husni, R. Permatasari, “Implementation of Multi Sensor Network as Air Monitoring Using IoT Applications,” 34th Int. Tech. Conf. Circuits/Systems, Comput. Commun. ITC-CSCC 2019, pp. 3–6, 2019, doi: 10.1109/ITC-CSCC.2019.8793407.
[20]M. Hautefeuille, C. O’Mahony, B. O’Flynn, K. Khalfi, and F. Peters, “A MEMS-based wireless multisensor module for environmental monitoring,” Microelectron. Reliab., vol. 48, no. 6, pp. 906–910, 2008, doi: 10.1016/j.microrel.2008.03.007.
[21]A. Naziha, L. Fu, G. M. Elamine, and L. Wang, “A method to construct an indoor air pollution monitoring system based on a wireless sensor network,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi: 10.3390/s19040967.
[22]S. Widodo, M. M. Amin, A. Supani, and A. S. Handayani, “Prototype Design of CO2, CH4 and SO2 Toxic Gas Detectors in the Room Using Microcontroller-Based Fuzzy Logic,” J. Phys. Conf. Ser., vol. 1500, no. 1, 2020, doi: 10.1088/1742-6596/1500/1/012107.
[23]C. Zuidema et al., “Mapping Occupational Hazards with a Multi-sensor Network in a Heavy-Vehicle Manufacturing Facility,” Ann. Work Expo. Heal., vol. 63, no. 3, pp. 280–293, 2019, doi: 10.1093/annweh/wxy111.
[24]D. D. Lee, “Environmental gas sensors,” IEEE Sens. J., vol. 1, no. 3, pp. 214–224, 2001, doi: 10.1109/JSEN.2001.954834.
[25]G. F. Fine, L. M. Cavanagh, A.Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors, vol. 10, no. 6, pp. 5469–5502, 2010, doi: 10.3390/s100605469.
[26]A. C. Lewis et al., “Evaluating the performance of low cost chemical sensors for air pollution research,” Faraday Discuss., vol. 189, pp. 85–103, 2016, doi: 10.1039/c5fd00201j.
[27]F. Karagulian et al., “Review of the performance of low-cost sensors for air quality monitoring,” Atmosphere (Basel)., vol. 10, no. 9, 2019, doi: 10.3390/atmos10090506.
[28]Y. Miao, H. Wu, and L. Zhang, “The Accurate Location Estimation of Sensor Node Using Received Signal Strength Measurements in Large-Scale Farmland,” 2018, doi: 10.1155/2018/2325863.
[29]N. P. Hyslop and W. H. White, “Estimating precision using duplicate measurements,” J. Air Waste Manag. Assoc., vol. 59, no. 9, pp. 1032–1039, 2009, doi: 10.3155/1047-3289.59.9.1032.
[30]F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction methods,” ACM Comput. Surv., vol. 42, no. 3, 2010, doi: 10.1145/1670679.1670680.
- Abstract viewed - 705 times
- PDF downloaded - 707 times
Affiliations
Ade Silvia Handayani
Affiliation not stated
Nyayu Latifah Husni
State Polytechnic of Sriwijaya
Performance Evaluation on Applied Low-Cost Multi-Sensor Technology in Air Pollution Monitoring
Abstract
This research aims to discuss the application of multi-sensor network technology for the monitoring of indoor air pollution. Indoor air pollution has become a severe problem that affects public health, especially indoor parking. The indoor air pollution monitoring system will provide information about vehicle exhaust emission levels. We have improved the system to identify six parameters of the vehicles' gas emissions within a different location at once. This research aimed to measure the parameter of Carbon Monoxide (CO), Carbon Dioxide (CO2), Hydro Carbon (HC), temperature and humidity, and levels of particulates in the air (PM10). The performance of this system shows good ability to compare the results of measurements of air quality measuring professionals. In this study, we investigated the performance of a custom-built prototype developed under the android-based application to detect air pollution levels in the parking area. Our objective was to evaluate the suitability of a low-cost multi-sensor network for monitoring air pollution in parking and the other area. The benefit of our approach is that its time and space complexity make it valuable and efficient for real-time monitoring of air pollution.