[1] A. Ramachandran, “Trends in prevalence of diabetes in Asian countries,” World J. Diabetes, vol. 3, no. 6, p. 110, 2012, doi: 10.4239/wjd.v3.i6.110.
[2] T. Y. Wong, C. M. G. Cheung, M. Larsen, S. Sharma, and R. Simó, “Diabetic retinopathy,” Nat. Rev. Dis. Prim., vol. 2, no. March, 2016, doi: 10.1038/nrdp.2016.12.
[3]S. Albawi, T. A. M. Mohammed, and S. Alzawi, “Layers of a Convolutional Neural Network,” Ieee, 2017.[4]S. Tammina, “Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images,” Int. J. Sci. Res. Publ., vol. 9, no. 10, p. p9420, 2019, doi: 10.29322/ijsrp.9.10.2019.p9420.
[5] B. Liu, X. Zhang, Z. Gao, and L. Chen, “Weld defect images classification with VGG16-based neural network,” Commun. Comput. Inf. Sci., vol. 815, pp. 215–223, 2018, doi: 10.1007/978-981-10-8108-8_20.
[6] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional NeuralNetworks for Diabetic Retinopathy,” Procedia Comput. Sci., vol. 90, no. July, pp. 200–205, 2016, doi: 10.1016/j.procs.2016.07.014.
[7] R. Acharya U, C. K. Chua, E. Y. K. Ng, W. Yu, and C. Chee, “Application of higher order spectra for the identification of diabetes retinopathy stages,” J. Med. Syst., vol. 32, no. 6, pp. 481–488, 2008, doi: 10.1007/s10916-008-9154-8.
[8] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional Neural Networks for Diabetic Retinopathy,” Procedia Comput. Sci., vol. 90, no. July, pp. 200–205, 2016, doi: 10.1016/j.procs.2016.07.014.
[9] K. Xu, D. Feng, and H. Mi, “Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image,” Molecules, vol. 22, no. 12, 2017, doi: 10.3390/molecules22122054.
[10] W. Shaohua, L. Yan, and Z. Yin, “Deep convolutional neural networks for diabetic retinopathy classification,” ACM Int. Conf. Proceeding Ser., vol. 72, pp. 68–72, 2018, doi: 10.1145/3239576.3239589.
[11] R. Ghosh, K. Ghosh, and S. Maitra, “Automatic detection and classification of diabetic retinopathy stages using CNN,” 2017 4th Int. Conf. Signal Process. Integr. Networks, SPIN 2017, pp. 550–554, 2017, doi: 10.1109/SPIN.2017.8050011.
[12] S. R. Flaxman et al., “Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis,” Lancet Glob. Heal., vol. 5, no. 12, pp. e1221–e1234, 2017, doi: 10.1016/S2214-109X(17)30393-5.
[13] M. Porta and F. Bandello, “Diabetic retinopathy: A clinical update,” Diabetologia, vol. 45, no. 12, pp. 1617–1634, 2002, doi: 10.1007/s00125-002-0990-7.
[14] M. B. Sasongkoet al., “Prevalence of Diabetic Retinopathy and Blindness in Indonesian Adults With Type 2 Diabetes,” Am. J. Ophthalmol., vol. 181, pp. 79–87, 2017, doi: 10.1016/j.ajo.2017.06.019.
[15] V. Pengan, H. J. G. Sumual, and L. M. Rares, “KecenderunganPenderitaRetinopatiDiabetik,” e-CliniC, vol. 2, no. 2, 2014, doi: 10.35790/ecl.2.2.2014.5099.
[16] N. T. Setyoputri, S. A. Soelistijo, and W. Sasono, “Prevalensi dan KarakteristikPasienRetinopatiDiabetik di Poli Mata RSUD Dr. Soetomo,” JUXTA J. Ilm. Mhs. Kedokt. Univ. Airlangga, vol. 9, no. 1, pp. 20–25, 2017.
[17] S. Sangwan, V. Sharma, and M. Kakkar, “Identification of different stages of diabetic retinopathy,” 2015 Int. Conf. Comput. Comput. Sci. ICCCS 2015, pp. 232–237, 2015, doi: 10.1109/ICCACS.2015.7361356.
[18] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” no. December, 2015, [Online]. Available: http://arxiv.org/abs/1511.08458.
[19] M. Z. Alomet al., “The history began from AlexNet: A comprehensive survey on deep learning approaches,” arXiv, 2018.