[1]I. R. Dwi Saputro, N. D. Maryati, S. R. Solihati, I. Wijayanto, S. Hadiyoso, and R. Patmasari, “Seizure Type Classification on EEG Signal using Support Vector Machine,” J. Phys. Conf. Ser., vol. 1201, no. 1, 2019, doi: 10.1088/1742-6596/1201/1/012065.
[2]K. M. Almustafa, “Classification of epileptic seizure dataset using different machine learning algorithms,” Informatics Med. Unlocked, vol. 21, p. 100444, 2020, doi: 10.1016/j.imu.2020.100444.
[3]M. H. Aslam et al., “Classification of EEG Signals for Prediction of Epileptic Seizures,” Appl. Sci., vol. 12, no. 14, p. 7251, 2022, doi: 10.3390/app12147251.
[4]R. Anggara and Y. Rahayu, “Sistem Electroencephalogram ( EEG ) Untuk Analisis Sinyal Gelombang Otak Pada Pasien Depresi,” JOM FTEKNIK, vol. 7, pp. 1–6,2020.
[5]N. B. Aji and H. Tjandrasa, “Klasifikasi Eeg Epilepsi Menggunakan Singular Spectrum Analysis, Power Spectral Density Dan Convolution Neural Network,” JUTI J. Ilm. Teknol. Inf., vol. 15, no. 2, p. 185, 2017, doi: 10.12962/j24068535.v15i2.a662.
[6]W. L. Mao, H. I. K. Fathurrahman, Y. Lee, and T. W. Chang, “EEG dataset classification using CNN method,” J. Phys. Conf. Ser., vol. 1456, no. 1, 2020, doi: 10.1088/1742-6596/1456/1/012017.
[7]I. B. Santoso, Y. Adrianto, A. D. Sensusiati, D. P. Wulandari, and I. K. E. Purnama, “Epileptic EEG Signal Classification Using Convolutional Neural Network Based on Multi-Segment of EEG Signal,” Int. J. Intell. Eng. Syst., vol. 14, no. 3, pp. 160–176, 2021, doi: 10.22266/ijies2021.0630.15.
[8]Z. Wen, R. Xu, and J.Du, “A novel convolutional neural networks for emotion recognition based on EEG signal,” 2017 Int. Conf. Secur. Pattern Anal. Cybern. SPAC 2017, vol. 2018-Janua, pp. 672–677, 2018, doi: 10.1109/SPAC.2017.8304360.
[9]M. A. Saleem, N. Senan, F. Wahid, M. Aamir, A. Samad, and M. Khan, “Comparative Analysis of Recent Architecture of Convolutional Neural Network,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/7313612.
[10]Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, 2020, doi: 10.1109/TCYB.2020.2983860.
[11]R. Abiyev, M. Arslan, J. B. Idoko, B. Sekeroglu, and A. Ilhan, “Identification of epileptic eeg signals using convolutional neural networks,” Appl. Sci., vol. 10, no. 12, 2020, doi: 10.3390/APP10124089.
[12]M. Ezar Al Rivan and A. Giovri Riyadi, “Perbandingan Arsitektur LeNet dan AlexNet Pada Metode Convolutional Neural Network Untuk Pengenalan American Sign Language,” J. Komput. Terap., vol. 7, no. Vol. 7 No. 1 (2021), pp. 53–61, 2021, doi: 10.35143/jkt.v7i1.4489.
[13]M. Kayed, A. Anter, and H. Mohamed, “Classification of Garments from Fashion MNIST Dataset Using CNN LeNet-5 Architecture,” Proc. 2020 Int. Conf. Innov.
Trends Commun. Comput. Eng. ITCE 2020, no. February, pp. 238–243, 2020, doi: 10.1109/ITCE48509.2020.9047776.
[14]S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
[15]M. Resa, A. Yudianto, and H. Al Fatta,“Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolutional Neural Network,” J. Teknol. Inf., vol. 4, no. 2, pp. 182–190, 2020.
[16]S. Albawi, T. A. M. Mohammed, and S. Alzawi, “Understanding of a Convolutional Neural Network,” 2017 Int. Conf. Eng. Technol., pp. 1–6, 2017.
[17]D. Irfansyah, M. Mustikasari, and A. Suroso, “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” J. Inform. J. Pengemb. IT, vol. 6, no. 2, pp. 87–92, 2021, [Online]. Available: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/2802.
[18]M. R. Alwanda, R. P. K. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” J. Algoritm., vol. 1, no. 1, pp. 45–56, 2020, doi: 10.35957/algoritme.v1i1.434.
[19]D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.